皮尔森理解

皮尔森相关系数(Pearson correlation coefficient)也称皮尔森积矩相关系数(Pearson product-moment correlation coefficient) ,是一种线性相关系数。皮尔森相关系数是用来反映两个变量线性相关程度的统计量。相关系数用r表示,其中n为样本量,分别为两个变量的观测值和均值。r描述的是两个变量间线性相关强弱的程度。r的绝对值越大表明相关性越强。

简单的相关系数的分类

  • 0.8-1.0 极强相关
  • 0.6-0.8 强相关
  • 0.4-0.6 中等程度相关
  • 0.2-0.4 弱相关
  • 0.0-0.2 极弱相关或无相关

r描述的是两个变量间线性相关强弱的程度。r的取值在-1与+1之间,若r>0,表明两个变量是正相关,即一个变量的值越大,另一个变量的值也会越大;若r<0,表明两个变量是负相关,即一个变量的值越大另一个变量的值反而会越小。r 的绝对值越大表明相关性越强,要注意的是这里并不存在因果关系。

python 实现

# encoding:utf-8
import pandas as pd
from pandas import DataFrame
import matplotlib.pyplot as plot
import math
#target_url = ("https://archive.ics.uci.edu/ml/machine-learning-databases/undocumented/connectionist-bench/sonar/sonar.all-data")
#rockVMines = pd.read_csv(target_url ,header=None,prefix="V") #prefix前缀
rockVMines = pd.read_csv('../rockdata.txt',header=None,prefix="V")  #prefix前缀
row2 = rockVMines.iloc[1,0:60]
row3 = rockVMines.iloc[2,0:60]
n = len(row2)
mean2 = row2.mean()
mean3 = row3.mean()
t2=0 ; t3=0;t1=0
for i in range(n):
t2 += (row2[i] - mean2) * (row2[i] - mean2) / n
t3 += (row3[i] - mean3) * (row3[i] - mean3) / n
r23=0
for i in range(n):
r23 += (row2[i] - mean2)*(row3[i] - mean3)/(n* math.sqrt(t2 * t3))
print r23
corMat = DataFrame(rockVMines.corr())  #corr 求相关系数矩阵
print corMat
plot.pcolor(corMat)
plot.show()

python 皮尔森相关系数的更多相关文章

  1. Spearman秩相关系数和Pearson皮尔森相关系数

    1.Pearson皮尔森相关系数 皮尔森相关系数也叫皮尔森积差相关系数,用来反映两个变量之间相似程度的统计量.或者说用来表示两个向量的相似度. 皮尔森相关系数计算公式如下:

  2. 【ML基础】皮尔森相关系数(Pearson correlation coefficient)

    前言 参考 1. 皮尔森相关系数(Pearson correlation coefficient): 完

  3. spark MLlib 概念 1:相关系数( PPMCC or PCC or Pearson's r皮尔森相关系数) and Spearman's correlation(史匹曼等级相关系数)

    皮尔森相关系数定义: 协方差与标准差乘积的商. Pearson's correlation coefficient when applied to a population is commonly r ...

  4. 相关性系数及其python实现

    参考文献: 1.python 皮尔森相关系数 https://www.cnblogs.com/lxnz/p/7098954.html 2.统计学之三大相关性系数(pearson.spearman.ke ...

  5. 《Spark Python API 官方文档中文版》 之 pyspark.sql (二)

    摘要:在Spark开发中,由于需要用Python实现,发现API与Scala的略有不同,而Python API的中文资料相对很少.每次去查英文版API的说明相对比较慢,还是中文版比较容易get到所需, ...

  6. python 推荐算法

    每个人都会有这样的经历:当你在电商网站购物时,你会看到天猫给你弹出的“和你买了同样物品的人还买了XXX”的信息:当你在SNS社交网站闲逛时,也会看到弹出的“你可能认识XXX“的信息:你在微博添加关注人 ...

  7. 《Spark Python API 官方文档中文版》 之 pyspark.sql (四)

    摘要:在Spark开发中,由于需要用Python实现,发现API与Scala的略有不同,而Python API的中文资料相对很少.每次去查英文版API的说明相对比较慢,还是中文版比较容易get到所需, ...

  8. 《Spark Python API 官方文档中文版》 之 pyspark.sql (三)

    摘要:在Spark开发中,由于需要用Python实现,发现API与Scala的略有不同,而Python API的中文资料相对很少.每次去查英文版API的说明相对比较慢,还是中文版比较容易get到所需, ...

  9. Python金融量化

    Python股票数据分析 最近在学习基于python的股票数据分析,其中主要用到了tushare和seaborn.tushare是一款财经类数据接口包,国内的股票数据还是比较全的 官网地址:http: ...

随机推荐

  1. springbatch---->springbatch的使用(五)

    这里我们介绍一个从数据库读取数据并写入到文件中的案例.如果能真心爱上一个人,那么不管对方是何等恶劣,哪怕对方并不爱自己,人生也至少不会是地狱,就算多少有点黯淡. 读取数据库数据 一.定义一个读写的jo ...

  2. vue工具 - vue-cli安装使用流程

    1.全局安装vue-cli cnpm i vue-cli -g 2.监测安装版本 vue -V  大写V : version 3.指定目录下新建项目 vue init webpack [项目名] 按自 ...

  3. 第二步 (仅供参考) sencha touch + PhoneGap(cordova 2.9 及其以下版本) 使用 adt eclipse进行打包

    首先你得安装一个adt-eclipse 参考资料 http://www.crifan.com/android_eclipse_offline_install_adt/ 然后就可以运行adt-eclip ...

  4. nginx作为下载文件服务器

    1.前言 当我们希望分享自己的文件时,有多种方式,局域网可以采用共享,rtx传输,qq传输,发送到邮箱,直接u盘拷贝等等.但最简单的就是开启本地服务器,其他电脑通过网页的方式直接下载,这里介绍使用ng ...

  5. Sublime PlantUML环境配置

    参考[http://www.jianshu.com/p/e92a52770832]在安装中遇到不少问题,总结一次成功的步骤如下 一.安装步骤: 1)准备java  环境 jdk1.7 2)安装Subl ...

  6. 【CF891E】Lust 生成函数

    [CF891E]Lust 题意:给你一个长度为n的序列$a_i$,对这个序列进行k次操作,每次随机选择一个1到n的数x,令$res+=\prod\limits_{i!=x}a_i$(一开始res=0) ...

  7. [APP] Android 开发笔记 004-Android常用基本控件使用说明

    TextView 文本框 EditText控件 Button 与 ImageButton ImageView RadioButton CheckBox复选框 TextView 文本框 ,用于显示文本的 ...

  8. Java虚拟机五 堆的参数配置

    堆空间是Java进程的重要组成部分,几乎所有的应用相关的内存空间都和堆有关. 1.最大堆和初始堆的设置 当Java程序启动时,虚拟机就会分配一块初始堆空间,使用参数 -Xms 指定这块空间的大小.一般 ...

  9. Git - could not read Username for 'https://github.com',push报错解决办法

    执行git push命令异常,如下: git -c diff.mnemonicprefix=false -c core.quotepath=false -c credential.helper=sou ...

  10. python中列表排序,字典排序,列表中的字典排序

    #-*- encoding=utf-8 -*- # python3代码 import operator 一. 按字典值排序(默认为升序) x = {1:2, 3:4, 4:3, 2:1, 0:0} 1 ...