大数据开发实战:Stream SQL实时开发三
4、聚合操作
4.1、group by 操作
group by操作是实际业务场景(如实时报表、实时大屏等)中使用最为频繁的操作。通常实时聚合的主要源头数据流不会包含丰富的上下文信息,而是经常需要实时关联相关
相关的维度表,并针对这些扩展的、丰富维度属性进行各种业务的统计。
在下面的实例中,订单流通过买家id关联了买家维度表,获取其所在省份信息,然后实时统计每天各个省份的iPhone销量信息。
---从源头接收订单实时流
create table test_order_stream (
gmt_create varchar,
gmt_modified varchar,
order_id bigint,
buyer_id bigint,
seller_id bigint,
item_id bigint,
json_object varchar,
order_type varchar,
category_name varchar,
sub_category_name varchar
) with (
type = 'datahub',
endpoint = 'http://dh-et2.aliyun-inc.com',
project = ' your_project',
topic = 'test_topic_1',
accessId = 'your_access_id',
accessKey = 'your_access_key',
startTime = '2018-08-08-00:00:00'
);
----定义rds买家维度表
create table rds_dim_buyer(
buyer_id int,
age int,
province varchar,
star_level varchar,
primary key(buyer_id),
period for system_time ---定义了维度表的变化周期,即是一张变化的表
) with (
type = 'rds',
url = 'your_mySQL_url',
tableName = 'your_table_name',
userName = 'your_user_name',
password = 'your_password'
);
---订单流关联买家维度表获取买家所在省份,并过滤非iPhone订单
create view tmp_order as
select ord.order_id,
ord.gmt_create as order_create_time,
ord.buyer_id,
byr.age,
byr.provice,
byr.star_level
from test_order_stream as ord
left join rds_dim_buyer for system_time s of proctime() as byr
--实际项目中,可能为了避免join热点,对买家维度表做了md5处理,那么join的时候也要做对应处理,
--如,新的join条件可能会变为:
--on concat(substr(md5(ord.buyer_id), 1, 4), '_', ord.order_id) = byr.md5_byr_id
on ord.buyer_id = byr.buyer_id
where ord.category_name = '手机'
and ord.sub_category_name='iPhone';
---定义rds的结果表
create table rds_mobile_orders(
order_create_day varchar,
province varchar,
iphone_order_count int,
primary key(order_create_day,province)
) with (
type = 'rds',
url = 'your_mysql_url',
tableName = ' your_table_name',
userName = 'your_user_name',
password = 'your_password'
);
---安装天、省份汇总每天iphone手机销量
inert into rds_mobile_orders
select
substring(order_create_time, 1, 10) as order_create_day
province,
count(distinct order_id) as iphone_order_count
from tem_order
group by substring(order_create_time, 1, 10) ,province;
4.2、窗口 操作
group by操作的是全局窗口,阿里云Stream SQL还支持包含滑动、滚动、session等的窗口操作,下面以event time的滑动窗口为例介绍窗口操作。
针对event time操作必须首先定义watermark,直接在订单源头流定义即可,hop(datetime, slide, size)函数定义滑动窗口,其中datetime为时间列,slide为滑动间隔,size为窗口大小,
HOP_START则获取到窗口的开始时间,对上述的group by操作进行改动的实例如下,其业务含义为为每一小时统计过去24小时每个省份的的iphone手机销量。
---从源头接收订单实时流
create table test_order_stream (
gmt_create varchar,
gmt_modified varchar,
order_id bigint,
buyer_id bigint,
seller_id bigint,
item_id bigint,
json_object varchar,
order_type varchar,
category_name varchar,
sub_category_name varchar,
WATERMARK mywatermark FOR gmt_modified as withOffset(gmt_modified,1000)
) with (
type = 'datahub',
endpoint = 'http://dh-et2.aliyun-inc.com',
project = ' your_project',
topic = 'test_topic_1',
accessId = 'your_access_id',
accessKey = 'your_access_key',
startTime = '2018-08-08-00:00:00'
);
----定义rds买家维度表
create table rds_dim_buyer(
buyer_id int,
age int,
province varchar,
star_level varchar,
primary key(buyer_id),
period for system_time ---定义了维度表的变化周期,即是一张变化的表
) with (
type = 'rds',
url = 'your_mySQL_url',
tableName = 'your_table_name',
userName = 'your_user_name',
password = 'your_password'
);
---订单流关联买家维度表获取买家所在省份,并过滤非iPhone订单
create view tmp_order as
select ord.order_id,
ord.gmt_create as order_create_time,
ord.buyer_id,
byr.age,
byr.provice,
byr.star_level
from test_order_stream as ord
left join rds_dim_buyer for system_time s of proctime() as byr
--实际项目中,可能为了避免join热点,对买家维度表做了md5处理,那么join的时候也要做对应处理,
--如,新的join条件可能会变为:
--on concat(substr(md5(ord.buyer_id), 1, 4), '_', ord.order_id) = byr.md5_byr_id
on ord.buyer_id = byr.buyer_id
where ord.category_name = '手机'
and ord.sub_category_name='iPhone';
---定义rds的结果表
create table rds_mobile_orders(
stat_begin_time varchar,
province varchar,
iphone_order_count int,
primary key(stat_begin_time,province)
) with (
type = 'rds',
url = 'your_mysql_url',
tableName = ' your_table_name',
userName = 'your_user_name',
password = 'your_password'
);
---每一小时统计过去24小时每个省份iPhone手机销量
insert into rds_moble_orders
select
cast(HOP_START(order_modified_time interval '1' hour, interva '1' day)) as TIMESTAMP) as stat_begin_time,
province,
count(distinct order_id) as ihpone_order_count
from tmp_order
group by HOP_START(order_modified_time interval '1' hour, interva '1' day),province;
5、撤回机制
在某些业务场景下,必须考虑撤回,否则计算结果不准确,比如用户排队咨询的场景,如果某用户A从队列1转移到队列2,现在要统计每个队列最终承担的用户咨询量,那么
不考虑撤回将会导致重复计算。
阿里云Stream SQL支持撤回的处理,具体实例如下,其业务含义为统计每个队列最终承担的用户咨询量。
---从源头接收咨询session粒度的实时流
create table test_queue_stream(
gmt_create varchar,
gmt_modified varchar,
session_id bigint,
queue_id bigint,
session_user_id bigint,
session_user_name bigint
) with (
type = 'datahub',
endpoint = 'http://dh-et2.aliyun-inc.com',
project = ' your_project',
topic = 'test_topic_1',
accessId = 'your_access_id',
accessKey = 'your_access_key',
startTime = '2018-08-08-00:00:00'
);
----创建临时表,取每个session的最后一个queue_id,与下面的group by操作一起支持撤回
create view tmp_queue_stream as
select
session_id,
StringLast(queue_id)
from test_queue_stream
group by session_id;
-----定义rds的结果表
create table rds_queue_result(
queue_id varchar,
session_count int,
primary key(queue_id)
) with (
type = 'rds',
url = 'your_mysql_url',
tableName = ' your_table_name',
userName = 'your_user_name',
password = 'your_password'
)
---统计每个队列的排队量,如果用户有队列变更,group by时会撤回,不会重复统计
insert into rds_queue_result
select queue_id,
count(distinct session_id) as session_count
from tmp_queue_stream
group by queue_id;
参考资料:《离线和实时大数据开发实战》
大数据开发实战:Stream SQL实时开发三的更多相关文章
- 大数据开发实战:Stream SQL实时开发二
1.介绍 本节主要利用Stream SQL进行实时开发实战,回顾Beam的API和Hadoop MapReduce的API,会发现Google将实际业务对数据的各种操作进行了抽象,多变的数据需求抽象为 ...
- 大数据开发实战:Stream SQL实时开发一
1.流计算SQL原理和架构 流计算SQL通常是一个类SQL的声明式语言,主要用于对流式数据(Streams)的持续性查询,目的是在常见流计算平台和框架(如Storm.Spark Streaming.F ...
- Spark GraphX宝刀出鞘,图文并茂研习图计算秘笈与熟练的掌握Scala语言【大数据Spark实战高手之路】
Spark GraphX宝刀出鞘,图文并茂研习图计算秘笈 大数据的概念与应用,正随着智能手机.平板电脑的快速流行而日渐普及,大数据中图的并行化处理一直是一个非常热门的话题.图计算正在被广泛地应用于社交 ...
- AI应用开发实战 - 从零开始搭建macOS开发环境
AI应用开发实战 - 从零开始搭建macOS开发环境 本视频配套的视频教程请访问:https://www.bilibili.com/video/av24368929/ 建议和反馈,请发送到 https ...
- 王家林的“云计算分布式大数据Hadoop实战高手之路---从零开始”的第十一讲Hadoop图文训练课程:MapReduce的原理机制和流程图剖析
这一讲我们主要剖析MapReduce的原理机制和流程. “云计算分布式大数据Hadoop实战高手之路”之完整发布目录 云计算分布式大数据实战技术Hadoop交流群:312494188,每天都会在群中发 ...
- 云计算分布式大数据Hadoop实战高手之路第七讲Hadoop图文训练课程:通过HDFS的心跳来测试replication具体的工作机制和流程
这一讲主要深入使用HDFS命令行工具操作Hadoop分布式集群,主要是通过实验的配置hdfs-site.xml文件的心跳来测试replication具体的工作和流程. 通过HDFS的心跳来测试repl ...
- 云计算分布式大数据Hadoop实战高手之路第八讲Hadoop图文训练课程:Hadoop文件系统的操作实战
本讲通过实验的方式讲解Hadoop文件系统的操作. “云计算分布式大数据Hadoop实战高手之路”之完整发布目录 云计算分布式大数据实战技术Hadoop交流群:312494188,每天都会在群中发布云 ...
- Train-Alypay-Cloud:蚂蚁大数据平台培训开课通知(第三次)
ylbtech-Train-Alypay-Cloud:蚂蚁大数据平台培训开课通知(第三次) 1.返回顶部 1. 您好! 很高兴通知您,您已经成功报名将于蚂蚁金服计划在2018年2月28日- 2018年 ...
- Train-Alypay-Cloud:蚂蚁大数据平台培训开课通知(第三次)- 培训笔记3(机器学习平台)
ylbtech-Train-Alypay-Cloud:蚂蚁大数据平台培训开课通知(第三次)- 培训笔记3(机器学习平台) 机器学习平台 一站式可视化机器学习 https://pai.cloud.ali ...
随机推荐
- MVVM模式下关闭窗口的实现
通过行为来实现 实现界面与逻辑的分离 窗口关闭行为:其中含有布尔型的Close属性,将相应的关闭行为绑定到该属性上,则可以实现窗口的关闭行为,从而实现VM与View的分离 public class W ...
- Android ListView CheckBox状态错乱(转)
转自:http://www.cnblogs.com/wujd/archive/2012/08/17/2635309.html listView中包含checkBox的时候,经常会发生其中的checkB ...
- app分组
将项目中中的urls.py复制到app当中 清空项目名称文件夹下的urls.py文件中的内容,并写入一下内容 from django.conf.urls import url,include urlp ...
- 使用 IntraWeb (19) - 基本控件之 TIWTreeView
这是个饱受非议的控件; 我通过尝试, 理解了非议, 也能理解作者. 总之向作者的思路靠拢吧, 还是不错的. TIWTreeView 所在单元及继承链: IWCompTreeview.TIWTreeVi ...
- ftp通用类2
using System; using System.Net; using System.IO; using System.Text; using System.Net.Sockets; /// &l ...
- Eclipse Mark Occurrences
Mark Occurrences The Mark Occurrences feature enables you to see where an element is referenced by s ...
- sqlserver 2012 IDE中 Windows身份验证连接服务器报错 ,Login failed for user 'xxx\Administrator'. 原因: 找不到与提供的名称匹配的登录名。
问题描述: 本地装了两个实例,一个是SQLEXPRESS,可以正常操作.但是另一个开发常用的实例MSSQLSERVER却连Windows身份验证都报错,报的错误也是很奇葩,怎么会找不到Administ ...
- 谨慎注意WebBrowser控件的DocumentCompleted事件
引言 WebBrowser控件的DocumentCompleted事件一般就被认定为是在页面完全加载完毕后产生,而注释中也是这么写的: 但事实却并非如此. 首先它不一定会在完全加载完毕时才触发,有时就 ...
- mui选择器和dom获取元素的区别(记得把mui对象转为dom对象才能调用用dom方法)
<!DOCTYPE html><html> <head><meta charset="UTF-8"><meta name=&q ...
- Beego开源项目 收藏
官方收藏的项目 集成开发平台:基于 Golang 的快速开发平台,平台已经集成权限管理,菜单资源管理,域管理,角色管理,用户管理,组织架构管理,操作日志管理等等 OPMS - 是一款项目管理 + OA ...