题意:

计算:

\[\sum\limits_{a = 1}^{m}\sum\limits_{b = 1}^{n} \frac{\varphi(ab)}{\varphi(a)\varphi(b)} (\bmod p)
\]

思路:

考虑算术基本定理和\(\varphi(x)\)函数积性将式子化简:

令\(a = p_1^{t_1}p_2^{t_2} \cdots p_n^{t_n}\),\(b = p_1^{q_1}p_2^{q_2} \cdots p_n^{q_n}\)。

那么原式有:

\[\begin{eqnarray*}
\frac{\varphi(ab)}{\varphi(a)\varphi(b)} (\bmod p) = \frac{\varphi(p_1^{t_1 + q_1} \cdots p_n^{t_n + q_n})}{\varphi(p_1^{t_1} \cdots \varphi(p_n^{t_n})) \cdot \varphi(p_1^{q_1} \cdots p_n^{q_n})} (\bmod p)
\end{eqnarray*}
\]

我们单独考虑一下\(p_1\),那么有:

\[\begin{eqnarray*}
\frac{\varphi(p_1^{t_1 + q_1})}{\varphi(p_1^{t_1}) \cdot \varphi(p_1^{q_1})} = \frac{p_1^{t_1 + q_1} \cdot (1 - \frac{1}{p_1})} {p_1^{t_1} (1 - \frac{1}{p_1})\cdot p_1^{q_1}(1 - \frac{1}{p_1})}
\end{eqnarray*}
\]

我们令\(t_1 < p_1\),即\(p_1^{t_1}是gcd(a, b)\)的一部分,那么约分之后有:

\[\begin{eqnarray*}
\frac{p_1^{t_1}}{p_1^{t_1} (1 - \frac{1}{p_1})}
\end{eqnarray*}
\]

我们再同理考虑\(p_1 \cdots p_n\),我们发现分子刚好是\(gcd(a, b)\), 而分母是\(\varphi(gcd(a, b))\),即:

\[\begin{eqnarray*}
\frac{\varphi(ab)}{\varphi(a)\varphi(b)} (\bmod p) &=& \frac{\varphi(p_1^{t_1 + q_1} \cdots p_n^{t_n + q_n})}{\varphi(p_1^{t_1} \cdots \varphi(p_n^{t_n})) \cdot \varphi(p_1^{q_1} \cdots p_n^{q_n})} (\bmod p) \\
&=& \frac{gcd(a, b)}{\varphi(gcd(a, b))}
\end{eqnarray*}
\]

所以现在我们的问题转化成了求解:

\[\begin{eqnarray*}
\sum\limits_{a = 1}^{m}\sum\limits_{b = 1}^{n} \frac{gcd(a, b)}{\varphi(gcd(a, b))} (\bmod p)
\end{eqnarray*}
\]

令\(gcd(a, b) = d\),并且令\(n <= m\),有:

\[\begin{eqnarray*}
\sum\limits_{a = 1}^{m} \sum\limits_{b = 1}^{n} \frac{d}{\varphi(d)} = \sum\limits_{d = 1}^{n} d \cdot \varphi(d)^{-1} \sum\limits_{a = 1}^{n} \sum\limits_{b = 1}^{m} [gcd(a, b) == d] \\
\end{eqnarray*}
\]

我们令:

\[\begin{eqnarray*}
f(d) &=& \sum\limits_{a = 1}^{n} \sum\limits_{b = 1}^{m} [gcd(a, b) == d] \\
g(d) &=& \sum\limits_{d|x}f(x) \\
&=& \sum\limits_{a = 1}^{n} \sum\limits_{b = 1}^{m} [d | gcd(a, b)] \\
&=& \sum\limits_{a = 1}^{n/d}\sum\limits_{b = 1}^{m/d} [1 | gcd(a, b)] \\
&=& \lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor
\end{eqnarray*}
\]

进行莫比乌斯反演,有:

\[\begin{eqnarray*}
f(d) &=& \sum\limits_{d|x} \mu(\frac{x}{d}) g(d) \\
&=& \sum\limits_{d|x} \mu(\frac{x}{d}) \cdot \lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor \\
&=& \sum\limits_{x = 1}^{n/d} \mu(x) \cdot \lfloor \frac{n}{xd} \rfloor \lfloor \frac{m}{xd} \rfloor \\
\end{eqnarray*}
\]

所以,原式为:

\[\begin{eqnarray*}
\sum\limits_{i = 1}^{n} i \cdot \varphi(i)^{-1} \sum\limits_{d = 1}^{n|i} \mu(d) \lfloor \frac{n}{id} \rfloor \lfloor \frac{m}{id} \rfloor
\end{eqnarray*}
\]

预处理逆元,\(\varphi()\)函数,\(\mu()\)函数,然后直接算即可。

复杂度为\(\sum\limits_{i = 1}^{n} \sqrt{(i)}\)

#include <bits/stdc++.h>
using namespace std; #define ll long long
#define N 1000010
ll p;
int n, m;
int prime[N], mu[N];
int phi[N], inv[N], g[N];
bool check[N]; void init()
{
memset(check, 0, sizeof check);
prime[0] = 0;
phi[1] = 1;
mu[1] = 1;
for (int i = 2; i < N; ++i)
{
if (!check[i])
{
prime[++prime[0]] = i;
phi[i] = i - 1;
mu[i] = -1;
}
for (int j = 1; j <= prime[0]; ++j)
{
if (1ll * i * prime[j] >= N)
break;
check[i * prime[j]] = 1;
if (i % prime[j] == 0)
{
phi[i * prime[j]] = phi[i] * prime[j];
mu[i * prime[j]] = 0;
break;
}
else
{
phi[i * prime[j]] = phi[i] * (prime[j] - 1);
mu[i * prime[j]] = -mu[i];
}
}
}
} void work()
{
inv[1] = 1;
for (int i = 2; i <= n; ++i)
inv[i] = 1ll * inv[p % i] * (p - p / i) % p;
for (int i = 1; i <= n; ++i)
g[i] = 1ll * i * inv[phi[i]] % p;
} ll get(int n, int m)
{
ll res = 0;
for (int i = 1; i <= n; ++i)
res = (res + 1ll * mu[i] * (n / i) * (m / i)) % p;
return res;
} int main()
{
init();
int T; cin >> T;
while (T--)
{
scanf("%d %d %lld\n", &n, &m, &p);
if (n > m) swap(n, m);
work();
ll res = 0;
for (int i = 1; i <= n; ++i)
res = (res + g[i] * get(n / i, m / i)) % p;
printf("%lld\n", res);
}
return 0;
}

HDU 6390 GuGuFishtion的更多相关文章

  1. HDU 6390 GuGuFishtion(莫比乌斯反演 + 欧拉函数性质 + 积性函数)题解

    题意: 给定\(n,m,p\),求 \[\sum_{a=1}^n\sum_{b=1}^m\frac{\varphi(ab)}{\varphi(a)\varphi(b)}\mod p \] 思路: 由欧 ...

  2. hdu 6390 欧拉函数+容斥(莫比乌斯函数) GuGuFishtion

    http://acm.hdu.edu.cn/showproblem.php?pid=6390 题意:求一个式子 题解:看题解,写代码 第一行就看不出来,后面的sigma公式也不会化简.mobius也不 ...

  3. GuGuFishtion HDU - 6390 (欧拉函数,容斥)

    GuGuFishtion \[ Time Limit: 1500 ms\quad Memory Limit: 65536 kB \] 题意 给出定义\(Gu(a, b) = \frac{\phi(ab ...

  4. GuGuFishtion HDU - 6390 (杭电多校7E)

    啊啊啊啊...全在纸上 字丑...算了算了 然后除法部分都用逆元就好了 还有逆元打表....学到了...牛逼 #include<map> #include<set> #incl ...

  5. HDU 6390

    GuGuFishtion Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

  6. hdu GuGuFishtion 6390 数论 欧拉函数

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=6390 直接开始证明: 我们设…………………………………….....…...............………… ...

  7. HDOJ 2111. Saving HDU 贪心 结构体排序

    Saving HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  8. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  9. hdu 4859 海岸线 Bestcoder Round 1

    http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...

随机推荐

  1. 使用zsh 替换 bash

    摘自:http://macshuo.com/?p=676#wechat_redirect Shell是Linux/Unix的一个外壳,你理解成衣服也行.它负责外界与Linux内核的交互,接收用户或其他 ...

  2. mysql概要(十四)(一)索引

    1.索引是对数据库数据建立目录加快了查询速度.索引分为哈希索引和二叉树索引 (大数据量转移,如果表中带有大量字段索引,进行数据导入时,建议先去掉索引导入数据再统一加入索引,减少索引计算量) 2.索引原 ...

  3. 教你写gulp plugin

    前端开发近两年工程化大幅飙升.随着Nodejs大放异彩,静态文件处理不再需要其他语言辅助.主要的两大工具即为基于文件的grunt,基于流的gulp.简单来说,如果需要的只是文件处理,gulp绝对首选. ...

  4. 优秀的第二外语学习网站:Lang-8

    想要找native speaker帮你提高自己的写作能力么? 目前了解到的这方面最好的网站:http://lang-8.com 在这个网站上,你可以随便写一些句子或文章,然后就会有native spe ...

  5. VMware 安装CentOS 6.5图文步骤 以及安装后无法联网的解决办法

    一.VMwareWorkstation10 中安装Centos6.5(64位)步骤: 首先下载vmware 和centos6.5 1. 打开VMware-workstation点击“新建虚拟机”,到向 ...

  6. redis集群节点宕机

    redis集群是有很多个redis一起工作,那么就需要这个集群不是那么容易挂掉,所以呢,理论上就应该给集群中的每个节点至少一个备用的redis服务.这个备用的redis称为从节点(slave). 1. ...

  7. 170809、 把list集合中的数据按照一定数量分组

    /** * @Desc : 切分list位多个固定长度的list集合(我这是业务需要,直接是1w条数据切分) * @Author : RICK * @Params: [historyList] * @ ...

  8. 关于jquery的css的一些知识

    Query实例CSS 样式表动态选择本实例主要说的还是jquery的选择器,关于jquery的css的一些知识用类似 $("li").css("cursor", ...

  9. hdu4998 Rotate【计算几何】

    Noting is more interesting than rotation!  Your little sister likes to rotate things. To put it easi ...

  10. HDU 4578 - Transformation - [加强版线段树]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4578 Problem Description Yuanfang is puzzled with the ...