一起做RGB-D SLAM (2)
第二讲 从图像到点云
本讲中,我们将带领读者,编写一个将图像转换为点云的程序。该程序是后期处理地图的基础。最简单的点云地图即是把不同位置的点云进行拼接得到的。
当我们使用RGB-D相机时,会从相机里读到两种数据:彩色图像和深度图像。如果你有Kinect和ros,可以运行:
roslaunch openni_launch openni.launch
使Kinect工作。随后,如果PC连接上了Kinect,彩色图像与深度图像就会发布在 /camera/rgb/image_color 和 /camera/depth_registered/image_raw 中。你可以通过:
rosrun image_view image_view image:=/camera/rgb/image_color
来显示彩色图像。或者,你也可以在Rviz里看到图像与点云的可视化数据。
小萝卜:可是师兄!我现在手边没有Kinect,该怎么办啊!
师兄:没关系!你可以下载我们给你提供的数据。实际上就是下面两张图片啦!
小萝卜:怎么深度图是一团黑的呀!
师兄:请睁大眼睛仔细看!怎么可能是黑的!
小萝卜:呃……可是确实是黑的啊!
师兄:对!这是由于画面里的物体离我们比较近,所以看上去比较黑。但是你实际去读的话可是有数据的哦!
重要的备注:
- 这两张图来自于nyuv2数据集:http://cs.nyu.edu/~silberman/datasets/ 原图格式是ppm和pgm的,被我转成了png格式(否则博客园不让传……)。
- 你可以直接另存为这两个图,也可以到我的git里面获取这两个图。
- 实际Kinect里(或其他rgb-d相机里)直接采到的RGB图和深度图可能会有些小问题:
- 有一些时差(约几到十几个毫秒)。这个时差的存在,会产生“RGB图已经向右转了,怎么深度图还没转”的感觉哦。
- 光圈中心未对齐。因为深度毕竟是靠另一个相机获取的,所以深度传感器和彩色传感器参数可能不一致。
- 深度图里有很多“洞”。因为RGB-D相机不是万能的,它有一个探测距离的限制啦!太远或太近的东西都是看不见的呢。关于这些“洞”,我们暂时睁一只眼闭一只眼,不去理它。以后我们也可以靠双边bayes滤波器去填这些洞。但是!这是RGB-D相机本身的局限性。软件算法顶多给它修修补补,并不能完全弥补它的缺陷。
不过请你放心,在我们给出的这两个图中,都进行了预处理。你可以认为“深度图就是彩色图里每个像素距传感器的距离”啦!
师兄:现在,我们要把这两个图转成点云啦,因为计算每个像素的空间点位置,可是后面配准、拼图等一系列事情的基础呢。比如,在配准时,必须知道特征点的3D位置呢,这时候就要用到我们这里讲到的知识啦!
小萝卜:听起来很重要的样子!
师兄:对!所以请读者朋友务必掌握好这部分的内容啦!
从2D到3D(数学部分)
上面两个图像给出了机器人外部世界的一个局部的信息。假设这个世界由一个点云来描述:$X=\{ x_1, \ldots, x_n \}$. 其中每一个点呢,有 $r,g,b,x,y,z$一共6个分量,表示它们的颜色与空间位置。颜色方面,主要由彩色图像记录; 而空间位置,可以由图像和相机模型、姿态一起计算出来。
对于常规相机,SLAM里使用针孔相机模型(图来自http://www.comp.nus.edu.sg/~cs4243/lecture/camera.pdf ):
$$ u = \frac{ x \cdot f_x }{z} + c_x $$
$$ v = \frac{ y \cdot f_y }{z} + c_y $$
$$ d = z \cdot s $$
其中,$f_x, f_y$指相机在$x,y$两个轴上的焦距,$c_x, c_y$指相机的光圈中心,$s$指深度图的缩放因子。
小萝卜:好晕啊!突然冒出这么多个变量!
师兄:别急啊,这已经是很简单的模型了,等你熟悉了就不觉得复杂了。
这个公式是从$(x,y,z)$推到$(u,v,d)$的。反之,我们也可以把它写成已知$(u,v,d)$,推导$(x,y,z)$的方式。请读者自己推导一下。
不,还是我们来推导吧……公式是这样的:
$$ z = d/s $$
$$ x = (u-c_x) \cdot z/f_x $$
$$ y = (v-c_y) \cdot z/ f_y $$
怎么样,是不是很简单呢?事实上根据这个公式就可以构建点云啦。
通常,我们会把$f_x, f_y, c_x, c_y$这四个参数定义为相机的内参矩阵$C$,也就是相机做好之后就不会变的参数。相机的内参可以用很多方法来标定,详细的步骤比较繁琐,我们这里就不提了。给定内参之后呢,每个点的空间位置与像素坐标就可以用简单的矩阵模型来描述了:
$$ s \cdot \left[ \begin{array}{l} u \\ v \\ 1 \end{array} \right] = C \cdot \left( R \cdot \left[ \begin{array}{l} x \\ y \\ z \end{array} \right] +t \right)$$
其中,$R$和$t$是相机的姿态。$R$代表旋转矩阵,$t$代表位移矢量。因为我们现在做的是单幅点云,认为相机没有旋转和平移。所以,把$R$设成单位矩阵$I$,把$t$设成了零。$s$是scaling factor,即深度图里给的数据与实际距离的比例。由于深度图给的都是short (mm单位),$s$通常为1000。
小萝卜:于是就有了上面那个$(u,v,d)$转$(x,y,z)$的公式?
师兄:对!真聪明!如果相机发生了位移和旋转,那么只要对这些点进行位移和旋转操作即可。
从2D到3D (编程部分)
下面,我们来实现一个程序,完成从图像到点云的转换。请在上一节讲到的 代码根目录/src/ 文件夹中新建一个generatePointCloud.cpp文件:
touch src/generatePointCloud.cpp
小萝卜:师兄!一个工程里可以有好几个main函数么?
师兄:对呀,cmake允许你自己定义编译的过程。我们会把这个cpp也编译成一个可执行的二进制,只要在cmakelists.txt里作相应的更改便行了。
接下来,请在刚建的文件里输入下面的代码。为保证行文的连贯性,我们先给出完整的代码,然后在重要的地方加以解释。建议新手逐字自己敲一遍,你会掌握得更牢固。
// C++ 标准库
#include <iostream>
#include <string>
using namespace std; // OpenCV 库
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp> // PCL 库
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h> // 定义点云类型
typedef pcl::PointXYZRGBA PointT;
typedef pcl::PointCloud<PointT> PointCloud; // 相机内参
const double camera_factor = ;
const double camera_cx = 325.5;
const double camera_cy = 253.5;
const double camera_fx = 518.0;
const double camera_fy = 519.0; // 主函数
int main( int argc, char** argv )
{
// 读取./data/rgb.png和./data/depth.png,并转化为点云 // 图像矩阵
cv::Mat rgb, depth;
// 使用cv::imread()来读取图像
// API: http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imread#cv2.imread
rgb = cv::imread( "./data/rgb.png" );
// rgb 图像是8UC3的彩色图像
// depth 是16UC1的单通道图像,注意flags设置-1,表示读取原始数据不做任何修改
depth = cv::imread( "./data/depth.png", - ); // 点云变量
// 使用智能指针,创建一个空点云。这种指针用完会自动释放。
PointCloud::Ptr cloud ( new PointCloud );
// 遍历深度图
for (int m = ; m < depth.rows; m++)
for (int n=; n < depth.cols; n++)
{
// 获取深度图中(m,n)处的值
ushort d = depth.ptr<ushort>(m)[n];
// d 可能没有值,若如此,跳过此点
if (d == )
continue;
// d 存在值,则向点云增加一个点
PointT p; // 计算这个点的空间坐标
p.z = double(d) / camera_factor;
p.x = (n - camera_cx) * p.z / camera_fx;
p.y = (m - camera_cy) * p.z / camera_fy; // 从rgb图像中获取它的颜色
// rgb是三通道的BGR格式图,所以按下面的顺序获取颜色
p.b = rgb.ptr<uchar>(m)[n*];
p.g = rgb.ptr<uchar>(m)[n*+];
p.r = rgb.ptr<uchar>(m)[n*+]; // 把p加入到点云中
cloud->points.push_back( p );
}
// 设置并保存点云
cloud->height = ;
cloud->width = cloud->points.size();
cout<<"point cloud size = "<<cloud->points.size()<<endl;
cloud->is_dense = false;
pcl::io::savePCDFile( "./pointcloud.pcd", *cloud );
// 清除数据并退出
cloud->points.clear();
cout<<"Point cloud saved."<<endl;
return ;
}
程序运行需要数据。请把上面的那两个图存放在 代码根目录/data 下(没有这个文件夹就新建一个)。
我们使用OpenCV的imread函数读取图片。在OpenCV2里,图像是以矩阵(cv::MAt)作为基本的数据结构。Mat结构既可以帮你管理内存、像素信息,还支持一些常见的矩阵运算,是非常方便的结构。彩色图像含有R,G,B三个通道,每个通道占8个bit(也就是unsigned char),故称为8UC3(8位unsigend char, 3通道)结构。而深度图则是单通道的图像,每个像素由16个bit组成(也就是C++里的unsigned short),像素的值代表该点离传感器的距离。通常1000的值代表1米,所以我们把camera_factor设置成1000. 这样,深度图里每个像素点的读数除以1000,就是它离你的真实距离了。
接下来,我们按照“先列后行”的顺序,遍历了整张深度图。在这个双重循环中:
for (int m = ; m < depth.rows; m++)
for (int n=; n < depth.cols; n++)
m指图像的行,n是图像的列。它和空间点的坐标系关系是这样的:
深度图第m行,第n行的数据可以使用depth.ptr<ushort>(m) [n]来获取。其中,cv::Mat的ptr函数会返回指向该图像第m行数据的头指针。然后加上位移n后,这个指针指向的数据就是我们需要读取的数据啦。
计算三维点坐标的公式我们已经给出过了,代码里原封不动地实现了一遍。我们根据这个公式,新增了一个空间点,并放入了点云中。最后,把整个点云存储为 ./data/pointcloud.pcd 文件。
编译并运行
最后,我们在src/CMakeLists.txt里加入几行代码,告诉编译器我们希望编译这个程序。请在此文件中加入以下几行:
# 增加PCL库的依赖
FIND_PACKAGE( PCL REQUIRED COMPONENTS common io ) # 增加opencv的依赖
FIND_PACKAGE( OpenCV REQUIRED ) # 添加头文件和库文件
ADD_DEFINITIONS( ${PCL_DEFINITIONS} )
INCLUDE_DIRECTORIES( ${PCL_INCLUDE_DIRS} )
LINK_LIBRARIES( ${PCL_LIBRARY_DIRS} ) ADD_EXECUTABLE( generate_pointcloud generatePointCloud.cpp )
TARGET_LINK_LIBRARIES( generate_pointcloud ${OpenCV_LIBS}
${PCL_LIBRARIES} )
然后,编译新的工程:
cd build
cmake ..
make
cd ..
如果编译通过,就可在bin目录下找到新写的二进制:generate_pointcloud 运行它:
bin/generate_pointcloud
即可在data目录下生成点云文件。现在,你肯定希望查看一下新生成的点云了。如果已经安装了pcl,就可以通过:
pcl_viewer pointcloud.pcd
来查看新生成的点云。
课后作业
本讲中,我们实现了一个从2D图像到3D点云的转换程序。下一讲,我们将探讨图像的特征点提取与配准。配准过程中,我们需要计算2D图像特征点的空间位置。因此,请你编写一个头文件与一个源文件,实现一个point2dTo3d函数。请在头文件里写这个函数的声明,源文件里给出它的实现,并在cmake中把它编译成一个叫做slam_base的库。(你需要考虑如何定义一个比较好的接口。)这样一来,今后当我们需要计算它时,就只需调用这个函数就可以了。
小萝卜:师兄!这个作业看起来有些难度啊!
师兄:是呀,不能把读者想的太简单嘛。
最后呢,本节用到的源代码仍然可以从我的git里下载到。读者的鼓励就是对我最好的支持!
TIPS:
- 如果你打开点云,只看到红绿蓝三个方块,请按R重置视角。刚才你是站在原点盯着坐标轴看呢。
- 如果点云没有颜色,请按5显示颜色。
- cmake过程可能有PCL的警告,如果你编译成功了,无视它即可。这是程序员的本能。
一起做RGB-D SLAM (2)的更多相关文章
- 一起做RGB-D SLAM (4)
第四讲 点云拼接 广告:“一起做”系列的代码网址:https://github.com/gaoxiang12/rgbd-slam-tutorial-gx 当博客更新时代码也会随着更新. SLAM技术交 ...
- (2)RGB-D SLAM系列- 工具篇(依赖库及编译)
做了个SLAM的小视频,有兴趣的朋友可以看下 https://youtu.be/z5wDzMZF10Q 1)Library depended 一个完整的SLAM系统包括,数据流获取,数据读取,特征提取 ...
- Android 音视频编解码——RGB与YUV格式转换
一.RGB模型与YUV模型 1.RGB模型 我们知道物理三基色分别是红(Red).绿(Green).蓝(Blue).现代的显示器技术就是通过组合不同强度的红绿蓝三原色,来达成几乎任何一种可见光的颜色. ...
- 音视频编解码——RGB与YUV格式转换
一.RGB模型与YUV模型 1.RGB模型 我们知道物理三基色分别是红(Red).绿(Green).蓝(Blue).现代的显示器技术就是通过组合不同强度的红绿蓝三原色,来达成几乎任何一种可见光的颜色. ...
- 常用的SLAM解决方案
ORB SLAM 可以去Github上自己搜索现成的SLAM程序包 在此基础上做优化 视觉SLAM的分类方法:按摄像头的多少分为单目和双目,按是否使用概率方法分为概率法和图法 链接 学习SLAM重要的 ...
- 转:SLAM算法解析:抓住视觉SLAM难点,了解技术发展大趋势
SLAM(Simultaneous Localization and Mapping)是业界公认视觉领域空间定位技术的前沿方向,中文译名为“同步定位与地图构建”,它主要用于解决机器人在未知环境运动时的 ...
- BAD SLAM:捆绑束调整直接RGB-D SLAM
BAD SLAM:捆绑束调整直接RGB-D SLAM BAD SLAM: Bundle Adjusted Direct RGB-D SLAM 论文地址: http://openaccess.thecv ...
- Camera 图像处理原理分析
1 前言 做为拍照手机的核心模块之一,camera sensor效果的调整,涉及到众多的参数,如果对基本的光学原理及sensor软/硬件对图像处理的原理能有深入的理解和把握的话,对我们 ...
- Camera图像处理原理及实例分析-重要图像概念
Camera图像处理原理及实例分析 作者:刘旭晖 colorant@163.com 转载请注明出处 BLOG:http://blog.csdn.net/colorant/ 主页:http://rg ...
- Android Camera2采集摄像头原始数据并手动预览
Android Camera2采集摄像头原始数据并手动预览 最近研究了一下android摄像头开发相关的技术,也看了Google提供的Camera2Basic调用示例,以及网上一部分代码,但都是在Te ...
随机推荐
- Esper学习之九:EPL语法(五)
本篇的内容主要包括了Subquery(也就是子查询)和Join,内容不少,但是不难,基本上和sql差不太多. 1.Subquery EPL里的Subquery和sql的类似,是否比sql的用法更多我不 ...
- 四、K3 WISE 开发插件《工业单据老单插件开发新手指导》
开发环境:K/3 Wise 13.0.K/3 Bos开发平台.Visual Basic 6.0 =============================================== 目录 一 ...
- css3整理--border-radius
1.border-radius 标准: border-top-left-radius: x y // 左上角,x 圆角水平半径, y 圆角垂直半径 border-top-right-radius:x ...
- Linux命令 swap:内存交换空间
swap 内存交换空间的概念 swap使用上的限制
- ubuntu14.04 LTS Shutter配置快捷键
一 shutter设置后的截图 二 shutter配置快捷键 可通过 $shutter --help 查看命令 点击 “应用”按钮,然后:
- 网狐荣耀平台找不到存储过程 'GSP_GS_LoadGameMatchItem'错误解决
把RYGameMatchDB的存储过程复制到RYGameScoreDB即可,GSP_GS_InsertGameMatchItem和GSP_GS_DeleteGameMatchItem也一样 由于存储过 ...
- openstack-networking-neutron(三)---用户态和内核态的区别
究竟什么是用户态,什么是内核态,这两个基本概念以前一直理解得不是很清楚,根本原因个人觉得是在于因为大部分时候我们在写程序时关注的重点和着眼的角度放在了实现的功能和代码的逻辑性上,先看一个例子: 1)例 ...
- CF 434C Tachibana Kanade's Tofu[数位dp+AC自动机]
Solution //本代码压掉后两维 #include<cstdio> #define max(a,b) (a<b?b:a) using namespace std; inline ...
- tornado web开发
tornado是python的web框架,这里简单记录下利用tornado怎么实现文件的上传,其中web.py上传功能类似. 直接用代码说明: 代码来自:http://my.oschina.net ...
- elk单台环境搭建
一.简介1.核心组成ELK由Elasticsearch.Logstash和Kibana三部分组件组成:Elasticsearch是个开源分布式搜索引擎,它的特点有:分布式,零配置,自动发现,索引自动分 ...