作者:桂。

时间:2017-12-19  21:39:08

链接:http://www.cnblogs.com/xingshansi/p/8068021.html


前言

  前几天碰到一个序列分析的问题,涉及到自回归(auto-regression, AR)等模型,但如何确定序列的平稳性呢? 发现金融数据分析里,这方面的知识很多,以后用到可以借鉴,例如伍德里奇《计量经济学导论》,高铁梅《计量经济分析方法与建模》,关键词:序列检测与判定、概率模型、统计。

一、平稳特性

序列的平稳特性通常从三个方面分析:

1)均值

均值不应该是关于时间t的函数,而应该是一个常数。

2)方差

方差不应该是时间的函数,即方差需要有:同方差性(homoscedasticity)

3)协方差

i时刻与i+m时刻协方差不应该是时间的函数:

常用的平稳定义包括:1)严平稳;2)宽平稳;对于手中的序列,严平稳难以判定,通常用宽平稳判据:一阶矩、二阶矩,即从均值、方差角度考虑,而不再考虑高阶分布特性。

给定序列:

X(t) = Er(t)

其中Er(t)为高斯白噪声序列,则x(t)为平稳信号。

给定序列:

X(t) = X(t-1) + Er(t)

这便是随机游走:

小女孩从初始位置出发,经过若干步之后,位置可表示为:

X(t) = X(0) + Sum(Er(1),Er(2),Er(3).....Er(t))

随机游走的平稳性:

1)均值

E[X(t)] = E[X(0)] + Sum(E[Er(1)],E[Er(2)],E[Er(3)].....E[Er(t)])

均值是常数。

2)方差

Var[X(t)] = Var[X(0)] + Sum(Var[Er(1)],Var[Er(2)],Var[Er(3)].....Var[Er(t)])

Var[X(t)] = t * Var(Error) = Time dependent.

方差是时间的函数,可见随机游走是非平稳过程

二、平稳性检验

上文分析随机游走:

X(t) = X(t-1) + Er(t)

是非平稳过程。

白噪声序列:

X(t) = Er(t)

是平稳随机过程。

现在进行折中:

X(t) = Rho * X(t-1) + Er(t)

上面两个例子分别对应Rho = 0、1.

Rho = 0:

Rho= 0.5:

Rho = 0.9:

Rho = 1:

从图中可以看出,除了Rho = 1具有明显的非平稳特性外,其余序列都可近似看作平稳特性,此时已经不是严格意义的平稳(不一定满足宽平稳条件),通常借助其他方式检验:

H0:...; H1:...,进行判定。

三、其它

对于AR模型:

先看AR(1)的情形:

求方差:

可以看出平稳条件:,这与上文Rho绝对值介于(0,1)的结论是一致的。

推广到AR(2):

平稳条件为对应特征方程(高数-齐次方程的内容):

即:

更一般地,对于AR模型:特征值均论在单位圆内。可以看出平稳的判定是一种思路,与平稳条件:宽平稳并非严格等价。但这提供了检验平稳性的思路。ARMA等模型的分析与此类似,AR、ARMA的模型要求序列满足平稳特性,但对于拟合残差没有任何约束,基于异方差特性的ARCH等模型就是从这个种子里生出的新芽。

AR模型与数据平稳性之间的关系的更多相关文章

  1. Yii2 AR模型搜索数据条数不对,AR模型默认去重

    最近在做Yii2的项目时, 发现了一个yii2 自带的Ar模型会自动对搜索出来的字段去重. 默认去重字段: id,  其他字段暂没发现 1. 例如: public function fields { ...

  2. java内存模型及内存与cpu之间的关系

    主内存和cpu之间的关系,因为cpu是在是处理速度太快了.所以一般cpu都有一个cpu缓存,上图的意思是主内存--->cpu缓存--->cpu寄存器--->cpu执行处理,写的时候反 ...

  3. OSI七层协议模型、TCP/IP四层模型和五层协议体系结构之间的关系

    一.OSI七层模型 OSI七层协议模型主要是:应用层(Application).表示层(Presentation).会话层(Session).传输层(Transport).网络层(Network).数 ...

  4. 内存模型学习-- Container Executor task之间的关系

    (分割线前的都是废话) java8内存模型: http://www.cnblogs.com/paddix/p/5309550.html http://www.cnblogs.com/dingyings ...

  5. 概率图模型之有向图与无向图之间的关系 I map D map perfect map(完美图) 概念

    我们已经讨论了有向图和无向图框架下的概率模型,那么我们有必要讨论一下它们二者的关系.

  6. Hadoop,大数据,云计算三者之间的关系

    大数据和云计算是何关系?关于大数据和云计算的关系人们通常会有误解.而且也会把它们混起来说,分别做一句话直白解释就是:云计算就是硬件资源的虚拟化;大数据就是海量数据的高效处理.大数据.hadoop及云计 ...

  7. 第二章平稳时间序列模型——AR(p),MA(q),ARMA(p,q)模型及其平稳性

      1白噪声过程: 零均值,同方差,无自相关(协方差为0) 以后我们遇到的efshow如果不特殊说明,就是白噪声过程. 对于正态分布而言,不相关即可推出独立,所以如果该白噪声如果服从正态分布,则其还将 ...

  8. [kernel]字符设备驱动、平台设备驱动、设备驱动模型、sysfs几者之间的比较和关联

    转自:http://www.2cto.com/kf/201510/444943.html Linux驱动开发经验总结,绝对干货! 学习Linux设备驱动开发的过程中自然会遇到字符设备驱动.平台设备驱动 ...

  9. 现代数字信号处理——AR模型

    1. AR模型概念观       AR模型是一种线性预测,即已知N个数据,可由模型推出第N点前面或后面的数据(设推出P点),所以其本质类似于插值,其目的都是为了增加有效数据,只是AR模型是由N点递推, ...

随机推荐

  1. NGINX proxy_pass 域名解析问题

    前两天发现一个问题,当使用proxy_pass的时候,发现域名对应IP是缓存的,这样一旦VIP变化之后,就会报错,下面就来详细分析一下这个问题. 一.问题说明 location = /test { i ...

  2. mysqld.exe

    mysqld.exe是mysql的服务端程序,开启之后才能使用mysql.exe 将mysql安装成服务很简单: mysqld.exe install mysql 删除服务也很简单: sc delet ...

  3. jvm内存模型及分配

    1.什么是jvm?(1)jvm是一种用于计算设备的规范,它是一个虚构出来的机器,是通过在实际的计算机上仿真模拟各种功能实现的.(2)jvm包含一套字节码指令集,一组寄存器,一个栈,一个垃圾回收堆和一个 ...

  4. js 树结构数据遍历条件判断

    代码: /** * 树结构数据条件过滤 * js 指定删除数组(树结构数据) */ function filter (data, id) { var newData = data.filter(x = ...

  5. Inno Setup入门(十)——操作注册表

    有些程序需要随系统启动,或者需要建立某些文件关联等问题,这些都是通过在安装程序中对注册表进行操作的结果.Inno Setup中通过[registry]段实现对注册表的操作. 本段说明: 参数列表: 参 ...

  6. 数学之路-python计算实战(9)-机器视觉-图像插值仿射

    插值 Python: cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) → dst interpolation – interpol ...

  7. CSS的子选择器与后代选择器的区别

    来源于:http://www.jianshu.com/p/599654ba5f4a 子选择器: 一个比较有用的选择器子选择器,即大于符号(>),用于选择指定标签元素的第一代子元素.如右侧代码编辑 ...

  8. ios实例开发精品文章推荐(8.19)

    1.iOS源码:选择器类--简单的效果.<ignore_js_op> 下载地址:http://www.apkbus.com/android-109320-1-1.html 2.iOS源码: ...

  9. Delphi单元文件引用名称问题

    Delphi新版本的单元文件格式变化了,如windows变成了winapi.windows,如果想在单元引用中使用简称,则需要在工程选项中配置: 这样就可以使用全名或简写来引用单元了.

  10. iOS 如何写出更加严谨的应用

    本文旨在介绍一些能够帮助大家避开一些开发误区的经验. 一: 在开发中,经常能够遇到共用同一个界面的情况,一般情况下,我们会根据传入的model去做数据处理和保存. 当然如果不存在复用的情况下,根本不需 ...