opencv-python 图像处理(五)
Canny边缘检测
1) 使用高斯滤波器,以平滑图像,滤除噪声。
2) 计算图像中每个像素点的梯度强度和方向。
3) 应用非极大值(Non-Maximum Suppression)抑制,以消除边缘检测带来的杂散响应。
4) 应用双阈值(Double-Threshold)检测来确定真实的和潜在的边缘。
5) 通过抑制孤立的弱边缘最终完成边缘检测。
计算方法
1.高斯滤波
2.梯度和方向计算
、
3.非极大值抑制
4.双阈值确定
import cv2
import numpy as np
img=cv2.imread("d:/lena.jpg",cv2.IMREAD_GRAYSCALE)
v1=cv2.Canny(img,80,150)
v2=cv2.Canny(img,50,100)
res = np.hstack((v1,v2))
cv2.imshow("canny",res)
cv2.waitKey(0)
cv2.destroyAllWindows()
图像金字塔
- 高斯金字塔
- 拉普拉斯金字塔
高斯金字塔:向下采样方法(缩小)
高斯金字塔:向上采样方法(放大)
import cv2
import numpy as np
img=cv2.imread("d:/lena.jpg")
up=cv2.pyrUp(img) #放大
down=cv2.pyrDown(img)#缩小
cv2.imshow("up",down)
cv2.imshow("down",up)
cv2.waitKey(0)
cv2.destroyAllWindows()
图像轮廓
cv2.findContours(img,mode,method)
mode:轮廓检索模式
- RETR_EXTERNAL :只检索最外面的轮廓;
- RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中;
- RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界;
- RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次;
method:轮廓逼近方法
- CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)。
- CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分。
import cv2
import numpy as np
img=cv2.imread("d:/lena.jpg")
#为了更高的准确率,使用二值图像。
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
cv2.imshow("down",thresh)
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)#method:轮廓逼近方法
draw_img = img.copy()
res = cv2.drawContours(draw_img, contours, -1, (0, 0, 255), 2)#描绘轮廓
draw_img = img.copy()
cv2.imshow("draw",res)
cv2.waitKey(0)
cv2.destroyAllWindows()
opencv-python 图像处理(五)的更多相关文章
- 【图像处理】OpenCV+Python图像处理入门教程(五)阈值处理
这篇随笔介绍使用OpenCV进行图像处理的第五章 阈值处理. 5 阈值处理 阈值是指像素到达某临界值.阈值处理表示像素到达某临界值后,对该像素点进行操作和处理. 例如:设定一幅图像素阈值为200,则 ...
- 【图像处理】OpenCV+Python图像处理入门教程(四)几何变换
这篇随笔介绍使用OpenCV进行图像处理的第四章 几何变换. 4 几何变换 图像的几何变换是指将一幅图像映射到另一幅图像内.有缩放.翻转.仿射变换.透视.重映射等操作. 4.1 缩放 使用cv2. ...
- 【图像处理】OpenCV+Python图像处理入门教程(六)图像平滑处理
相信很多小伙伴都听过"滤波器"这个词,在通信领域,滤波器能够去除噪声信号等频率成分,然而在我们OpenCV中,"滤波"并不是对频率进行筛选去除,而是实现了图像的 ...
- 【图像处理】OpenCV+Python图像处理入门教程(七)图像形态学操作
图像形态学主要从图像内提取分量信息,该分量信息通常对表达图像的特征具有重要意义.例如,在车牌号码识别中,能够使用形态学计算其重要特征信息,在进行识别时,只需对这些特征信息运算即可.图像形态学在目标视觉 ...
- Opencv python图像处理-图像相似度计算
一.相关概念 一般我们人区分谁是谁,给物品分类,都是通过各种特征去辨别的,比如黑长直.大白腿.樱桃唇.瓜子脸.王麻子脸上有麻子,隔壁老王和儿子很像,但是儿子下巴涨了一颗痣和他妈一模一样,让你确定这是你 ...
- python图像处理:一福变五福
快过年了,各种互联网产品都出来撒红包.某宝一年一度的“集五福活动”更是成为每年的必备活动之一. 虽然到最后每人大概也就分个两块钱,但作为一个全民话题,大多数人还是愿意凑凑热闹. 毕竟对于如今生活在大城 ...
- Python 图像处理 OpenCV (15):图像轮廓
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像
前文传送门: 「Python 图像处理 OpenCV (1):入门」 普通操作 1. 读取像素 读取像素可以通过行坐标和列坐标来进行访问,灰度图像直接返回灰度值,彩色图像则返回B.G.R三个分量. 需 ...
- Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 图像属性 图像 ...
- Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
随机推荐
- mysql中msvcr120.dll文件丢失问题
安装VC++2013 若是以上方法不能解决,需要下载安装VC++2013,这是微软官网的链接 https://www.microsoft.com/zh-cn/download/confirmation ...
- C++双指针滑动和利用Vector实现无重复字符的最长子串—力扣算法
题目: 力扣原题链接:https://leetcode-cn.com/problems/longest-substring-without-repeating-characters/ 给定一个字符串, ...
- C++ STL容器
不定长数组:vector vector是一个模板类,作用为创建一个不定长的数组 声明方式:vector<int>a或者vector<double>b这种类型的方式. 基本操作: ...
- js 日期时间的格式化
将日期时间转换为指定格式,如:YYYY-mm-dd HH:MM表示2019-06-06 19:45 function dateFormat(fmt, date) { let ret; let opt ...
- echarts 部分美化配置项使用记录
一.图表背景色配置项,如背景颜色渐变 https://www.echartsjs.com/zh/option.html#backgroundColor 二.图表中图形的颜色,如柱状图行采用渐变颜色显示 ...
- 前端最佳实践——DOM操作
1.浏览器渲染原理 在讲DOM操作的最佳性能实践之前,先介绍下浏览器的基本渲染原理. 分为以下四个步骤: 解析HTML(HTML Parser) 构建DOM树(DOM Tree) 渲染树构建(Rend ...
- AWS SNS 创建 订阅 发布
AWS SNS 创建 订阅 发布 20180810 chenxin 为实现短信报警,添加以下SNS的短信(SMS)订阅 选择主题,创建新主题,或修改原有主题 进入对应主题后,选择创建订阅,选择SMS, ...
- Harbor 清理镜像(此方法比较粗暴,但是有效)
0x00 事件 Harbor 私有仓库中占有的存储慢慢越来越大,使用官方的清理工具以及 UI 上的垃圾清理,都似乎也不能清理掉-- 后来吾用了一种简单粗暴的方法清理镜像--删除 harbor regi ...
- 基于Python的SQL Server数据库对象同步轻量级实现
缘由 日常工作中经常遇到类似的问题:把某个服务器上的某些指定的表同步到另外一台服务器.类似需求用SSIS或者其他ETL工作很容易实现,比如用SSIS的话就可以,但会存在相当一部分反复的手工操作.建源的 ...
- sqlserver默认隔离级别下并发批量update同一张表引起的死锁
提到死锁,最最常规的场景之一是Session1 以排它锁的方式锁定A表,请求B表,session2以排它锁的方式锁定B表,请求A表之类的,访问顺序不一致导致死锁的情况本文通过简化,测试这样一种稍显特殊 ...