【HDU5409】CRB and Graph 边双联通 子树最值
# 题意
有一个简单图,n个点,m条边。对于每条割边,求出删去这条边后,在两个联通块中各取一个u,v。使得u<v,并且u尽量大而v尽量小。
# 思路
求出边双联通是肯定的。
答案的限制条件是重点。
假设分出来的两个联通块,一个的最大值是mx1,另一个的最大值是mx2。那么u = min(mx1, mx2),因为取个小点的,才能在另一个联通块中找到对应的v。
显然mx1,mx2中一个值等于n,所以我们只用找不包含n的联通块中的最大值。
怎么找,可以令n为根结点,dfs子树的最大值就行了。
又由于v越小越好,我们可以直接令v = u + 1;
#include <bits/stdc++.h>
using namespace std;
#define pb push_back
#define fi first
#define se second
#define debug(x) cerr<<#x << " := " << x << endl;
#define bug cerr<<"-----------------------"<<endl;
#define FOR(a, b, c) for(int a = b; a <= c; ++ a) typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll; template<class T> void _R(T &x) { cin >> x; }
void _R(int &x) { scanf("%d", &x); }
void _R(ll &x) { scanf("%lld", &x); }
void _R(double &x) { scanf("%lf", &x); }
void _R(char &x) { scanf(" %c", &x); }
void _R(char *x) { scanf("%s", x); }
void R() {}
template<class T, class... U> void R(T &head, U &... tail) { _R(head); R(tail...); } template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} const int inf = 0x3f3f3f3f; const int mod = 1e9+; /**********showtime************/
const int maxn = 1e5+;
vector<pii>mp[maxn];
set <pii>nmp[maxn];
int dfn[maxn],low[maxn],belong[maxn],tim;
int scc_cnt;
int ans[maxn];
int a[maxn], dp[maxn];
stack<int>st;
void dfs(int u, int fa) {
dfn[u] = low[u] = ++tim;
st.push(u);
for(pii p : mp[u]){
int v = p.fi;
if(v == fa) continue;
if(!dfn[v]) dfs(v, u);
if(!belong[v]) low[u] = min(low[u], low[v]);
}
if(low[u] == dfn[u]) {
scc_cnt++;
nmp[scc_cnt].clear();
int now;
while(true){
now = st.top(); st.pop();
belong[now] = scc_cnt;
a[scc_cnt] = max(a[scc_cnt], now);
if(now == u) break;
}
}
} void cal(int u, int fa) {
dp[u] = a[u];
for(pii p : nmp[u]) {
int v = p.fi, id = p.se;
if(v == fa) continue;
cal(v, u);
ans[id] = dp[v];
dp[u] = max(dp[u], dp[v]);
}
}
int main(){
int T; scanf("%d", &T);
while(T--) {
int n,m;
scanf("%d%d", &n, &m);
for(int i=; i<=n; i++) mp[i].clear(), dfn[i] = ,dp[i] = , a[i] = ,belong[i] = ;
for(int i=; i<=m; i++) {
int u,v;
scanf("%d%d", &u, &v);
mp[u].pb(pii(v, i));
mp[v].pb(pii(u, i));
ans[i] = ;
}
tim = ;
scc_cnt = ;
for(int i=; i<=n; i++) if(!dfn[i]) dfs(i, i);
for(int u=; u<=n; u++) {
for(pii p : mp[u]) {
int v = p.fi;
if(belong[u] == belong[v]) continue;
nmp[belong[u]].insert(pii(belong[v], p.se));
}
}
cal(belong[n], belong[n]); for(int i=; i<=m; i++) printf("%d %d\n", ans[i], ans[i] + (ans[i] != ));
}
return ;
}
【HDU5409】CRB and Graph 边双联通 子树最值的更多相关文章
- HDU5409---CRB and Graph 2015多校 双联通分量缩点
题意:一个联通的无向图, 对于每一条边, 若删除该边后存在两点不可达,则输出这两个点, 如果存在多个则输出第一个点尽可能大,第二个点尽可能小的. 不存在输出0 0 首先 若删除某一条边后存在多个联通分 ...
- Tarjan总结(缩点+割点(边)+双联通+LCA+相关模板)
Tarjan求强连通分量 先来一波定义 强连通:有向图中A点可以到达B点,B点可以到达A点,则称为强连通 强连通分量:有向图的一个子图中,任意两个点可以相互到达,则称当前子图为图的强连通分量 强连通图 ...
- hihocoder #1190 : 连通性·四 点双联通分量
http://hihocoder.com/problemset/problem/1190?sid=1051696 先抄袭一下 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描 ...
- 图连通性【tarjan点双连通分量、边双联通分量】【无向图】
根据 李煜东大牛:图连通性若干拓展问题探讨 ppt学习. 有割点不一定有割边,有割边不一定有割点. 理解low[u]的定义很重要. 1.无向图求割点.点双联通分量: 如果对一条边(x,y),如果low ...
- poj 3177 Redundant Paths 求最少添加几条边成为双联通图: tarjan O(E)
/** problem: http://poj.org/problem?id=3177 tarjan blog: https://blog.csdn.net/reverie_mjp/article/d ...
- POJ3177 & 求边双联通分量
题意: 给一张无向图,求加多少边使原图任意两点边双联通. SOL: 一个不会写边双点双强联通的傻逼. 一个结论:把一棵树变成满足条件的图需要加的边使入度为1的点数+1除以2.------>就是树 ...
- [POJ3177]Redundant Paths(双联通)
在看了春晚小彩旗的E技能(旋转)后就一直在lol……额抽点时间撸一题吧…… Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Tota ...
- hdu 3849 (双联通求桥)
一道简单的双联通求桥的题目,,数据时字符串,,map用的不熟练啊,,,,,,,,,,,,, #include <iostream> #include <cstring> #in ...
- hdu 4612 (双联通+树形DP)
加一条边后最少还有多少个桥,先Tarjan双联通缩点, 然后建树,求出树的直径,在直径起点终点加一条边去的桥最多, #pragma comment(linker, "/STACK:10240 ...
随机推荐
- Java 内存模型详解
概述 Java的内存模型(Java Memory Model )简称JMM.首先应该明白,Java内存模型是一个规范,主要规定了以下两点: 规定了一个线程如何以及何时可以看到其他线程修改过后的共享变量 ...
- python输出九九乘法表
1.脚本如下 (1)倒三角格式的,注意行前的空格 for i in range(1,10): for j in range(i,10): print("%d*%d= ...
- 物联网网关MQTT应用与配置测试介绍
1.MQTT介绍: MQTT(Message Queuing Telemetry Transport,消息队列遥测传输协议),作为除Modbus外最常用的协议之一,因其基于发布/订阅的模式,具有资源消 ...
- RGB颜色 三者都是0为黑色而255是白色 解释
问题: RGB颜色 都是0为黑色而255是白色 与日常生活的黑色白色差距怎么那么大,(与物理学中的黑色吸收光是否相悖)而且为什么要这样定义呢? 链接:https://www.zhihu.com/que ...
- Docker入门学习笔记
Docker 什么是Docker 虚拟化技术 在计算机中,虚拟化是一种资源管理技术,将计算机中的各种实体资源如:CPU.硬盘.内存等予以抽象.转换后呈现出来打破实体结构间的不可切割的障碍,使用户可以比 ...
- 插入Oracle数据库后返回当前主键id
最近做一个spring版本3.0.4的老项目功能,应用场景要用到插入oracle表后返回主键ID拿来和其他表关联. 用oralce的可以一直用这种处理方式,高兼容低,搜索网上的资料都不能和这个Spri ...
- Danjgo学习笔记(一)
## 创建项目: 1. 通过命令行的方式:首先要进入到安装了django的虚拟环境中.然后执行命令: ``` django-admin startproject [项目的名称] ``` 这样就可以在当 ...
- hadoop学习(七)----mapReduce原理以及操作过程
前面我们使用HDFS进行了相关的操作,也了解了HDFS的原理和机制,有了分布式文件系统我们如何去处理文件呢,这就的提到hadoop的第二个组成部分-MapReduce. MapReduce充分借鉴了分 ...
- Spring入门(六):条件化的bean
1. 概念 默认情况下,Spring中定义的bean在应用程序启动时会全部装配,不管当前运行的是哪个环境(Dev,QA或者Prod),也不管当前运行的是什么系统(Windows或者Linux),但有些 ...
- bytedance专题
一 挑战字符串 1 无重复字符的最长子串(见leetcode bug free) 2 最长公共前缀(见leetcode bug free) 3 字符串的排列 给定两个字符串 s1 和 s2,写一个函数 ...