传送门:https://vjudge.net/problem/URAL-1627

题意:

  给定一个n*m的图,问图中“.”的点生成的最小生成树有多少个。

思路:

  生成树的计数,需要用Kirchhoff矩阵。

 

实际中只开了一个矩阵,如果有一条边(u,v),那么把a[u][v]=a[v][u] = -1, a[u][u]++, a[v][v]++;

#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
//#pragma GCC optimize(3)
//#pragma comment(linker, "/STACK:102400000,102400000") //c++
// #pragma GCC diagnostic error "-std=c++11"
// #pragma comment(linker, "/stack:200000000")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
// #pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3) #define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull; typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = 1e9;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} /*-----------------------showtime----------------------*/
const int maxn = ;
char str[];
ll a[maxn][maxn];
int g[maxn][maxn];
int n,m,k;
void cal(){
ll ans = ;int sign = ;
for(int i=; i<=n; i++){ //当前行
for(int j=i+; j<=n; j++){
int x = i, y = j;
while(a[y][i]){ //利用gcd的方法,不停地进行辗转相除,达到消去其他行对应列元素的目的
ll t = a[x][i] / a[y][i];
for(int k=i; k<=n; k++)
a[x][k] = (a[x][k] - a[y][k]*t)%mod;
swap(x,y);
} if(x != i){ //奇数次交换,则D=-D'整行交换
for(int k = ; k<=n; k++){
swap(a[i][k], a[x][k]);
}
sign ^= ;
}
}
if(a[i][i] == ){ //斜对角中有一个0,则结果为0
puts("");
return;
}
else ans = ans * a[i][i] %mod;
}
if(sign) ans *= -;
if(ans < ) ans += mod;
printf("%lld\n", ans);
}
int main(){
while(~scanf("%d%d", &n, &m)){
k = ;
for(int i=; i<=n; i++){
scanf("%s", str);
for(int j=; j<m; j++){
if(str[j] == '.')g[i][j+] = ++k;
}
} for(int i=; i<=n; i++){
for(int j=; j<=m; j++){
int u = g[i][j],v;
if(u > ){
if(i + <= n && g[i+][j]){
v = g[i+][j];
a[u][v] = a[v][u] = -;
a[u][u]++;a[v][v]++;
}
if(j + <=m && g[i][j+]){
v = g[i][j+];
a[u][v] = a[v][u] = -;
a[u][u]++;a[v][v]++;
}
}
}
}
n = k-;
cal();
}
return ;
}

URAL - 1627

URAL-1627-Join 生成树计数的更多相关文章

  1. URAL - 1627:Join (生成树计数)

    Join 题目链接:https://vjudge.net/problem/URAL-1627 Description: Businessman Petya recently bought a new ...

  2. kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数

    第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...

  3. 【BZOJ1002】【FJOI2007】轮状病毒(生成树计数)

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1766  Solved: 946[Submit][Status ...

  4. SPOJ 104 HIGH - Highways 生成树计数

    题目链接:https://vjudge.net/problem/SPOJ-HIGH 解法: 生成树计数 1.构造 基尔霍夫矩阵(又叫拉普拉斯矩阵) n阶矩阵 若u.v之间有边相连 C[u][v]=C[ ...

  5. Luogu P5296 [北京省选集训2019]生成树计数

    Luogu P5296 [北京省选集训2019]生成树计数 题目链接 题目大意:给定每条边的边权.一颗生成树的权值为边权和的\(k\)次方.求出所有生成树的权值和. 我们列出答案的式子: 设\(E\) ...

  6. Loj 2320.「清华集训 2017」生成树计数

    Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...

  7. 「UVA10766」Organising the Organisation(生成树计数)

    BUPT 2017 Summer Training (for 16) #6C 题意 n个点,完全图减去m条边,求生成树个数. 题解 注意可能会给重边. 然后就是生成树计数了. 代码 #include ...

  8. SPOJ.104.Highways([模板]Matrix Tree定理 生成树计数)

    题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只 ...

  9. BZOJ1494 [NOI2007]生成树计数

    题意 F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  autoint Logout 捐赠本站 Probl ...

随机推荐

  1. golang文档、中文、学习文档

    Golang中文文档地址 http://zh-golang.appspot.com/doc/ Golang非英文文档地址: https://github.com/golang/go/wiki/NonE ...

  2. Superset 官方入门教程中文翻译

    本文翻译自 Superset 的官方文档:Toturial - Creating your first dashboard 最新版本的 Superset 界面与功能上与文档中提到的会有些许出入,以实际 ...

  3. Java----面向对象(继承&多态)

    一.继承 什么是继承 ? 让类与类之间产生了子父类关系 ; 继承的好处是: 提高代码的复用性和维护性 java中继承的特点是: 只支持单继承.不支持多继承,但是可以多层继承; 四种权限修饰符是 : p ...

  4. ipv6的连接

    基础知识不说了,网上一大堆! 基本内容不说了,写字太累了! 只说三点细节,记住就行: 1.ff开头的是多播地址,只能用于udp多播 2.fe80开头的是本地link地址,不管ping也好,connec ...

  5. 【游记】NOIP2018初赛

    声明 本文最初的版本创建之时,本人甚至只是个电脑的小白,因而不太会用电脑编辑文字,最初的版本写在一个Word文档里,被随意的丢弃在我杂乱无比的网盘的某一个角落,直到我决定整理自己的成长历程,将散落的游 ...

  6. java虚拟机学习笔记(四)---回收方法区

    Java虚拟机规范中规定不要求虚拟机在方法区实现垃圾收集,而且在方法区实现垃圾收集性价比确实很低.在堆中,尤其是新生代,一次垃圾收集可以回收75%-95%的空间,而永久代的垃圾回收效率远低于此. 永久 ...

  7. CSS等分布局方法

    原文链接:http://caibaojian.com/css-equal-layout.html CSS等比例划分,在CSS布局中是比较重要的,下面分享几种常用方法和探讨一下兼容性. 一:浮动布局+百 ...

  8. pythonday04数据类型(二)

    今日内容: 1.列表 2.元组 3.py2与py3的区别 4解释器/编译器 5.练习题 1.列表 想要表示多个”事物“,可以使用列表 users = ["李邵奇","奇航 ...

  9. Liunx之nginx代理

    一.代理 正向代理 正向代理,也就是传说中的代理,他的工作原理就像一个跳板(VPN),简单的说: 我是一个用户,我访问不了某网站,但是我能访问一个代理服务器,这个代理服务器呢,他能访问那个我不能访问的 ...

  10. threejs 学习之

    主要内容: 使用 threejs 创建 20x20 的网格,鼠标移动时,方块跟随移动,点击时在网格任意位置放置方块,按 shift 时,删除当前位置方块. 流程如下: 创建网格 创建一个与网格同样尺寸 ...