Leetcode之回溯法专题-51. N皇后(N-Queens)
Leetcode之回溯法专题-51. N皇后(N-Queens)
n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
上图为 8 皇后问题的一种解法。
给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。
每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 'Q'
和 '.'
分别代表了皇后和空位。
示例:
输入: 4
输出: [
[".Q..", // 解法 1
"...Q",
"Q...",
"..Q."], ["..Q.", // 解法 2
"Q...",
"...Q",
".Q.."]
]
解释: 4 皇后问题存在两个不同的解法。 分析:输入一个N,求在这个N*N的面板里,N皇后的解法。要求是,放置了一个皇后时,该皇后的 行 列 不能存在其他皇后,且2个对角线上也不能有皇后。
利用回溯法可以解答这一题,首先初始化一个N*N的数组,并在其值上设置成'.'。
char mp[][] = new char[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
mp[i][j] = '.';
}
}
然后我们new一个存答案的List,
List<List<String>> ans = new ArrayList<>();
在写DFS之前,我们需要写一个boolean型的ok函数,用于判断一个棋盘是否符合要求:
public boolean ok(char[][] mp, int len, int x, int y) {
// check row
for (int i = 0; i < len; i++) {
if (i == y)
continue;
if (mp[x][i] == 'Q')
return false;
} // check col
for (int i = 0; i < len; i++) {
if (i == x)
continue;
if (mp[i][y] == 'Q')
return false;
} // x=1 y=3
int cnt = 0;
int up = 0;
int down = 0; for(int i=y+1;i<len;i++){
up = (++cnt)*-1+x;
down = cnt*1+x; if(up<len && up>=0){
//System.out.println("mp[up][i]=["+up+"]["+i+"]");
if(mp[up][i]=='Q')
return false;
} if(down>=0 && down<len){
//System.out.println("mp[down][i]=["+down+"]["+i+"]");
if(mp[down][i]=='Q'){
return false;
}
}
} //System.out.println("other");
cnt = 0;
for(int i=y-1;i>=0;i--){
up = (++cnt)*-1+x;
down = cnt*1+x; if(up<len && up>=0){
//System.out.println("mp[up][i]=["+up+"]["+i+"]");
if(mp[up][i]=='Q')
return false;
} if(down>=0 && down<len){
//System.out.println("mp[down][i]=["+down+"]["+i+"]");
if(mp[down][i]=='Q'){
return false;
}
}
} return true;
}
下一步开始写dfs函数,
第一个参数是mp数组,是这一副棋盘,
第二个参数是n,代表的是棋盘的大小,
第三个参数是i,把2维的矩阵转换为1维了,例如i=1就对应着(0,1)这个点,以此类推。
第四个参数是queen,用来存现在放的棋子的个数。
public void dfs(char[][] mp, int len, int i,int queen) {
int x = i / len;
int y = i % len; if ((x >= len || y >= len)) {
if(queen!=len) return;
List<String> list = new ArrayList<>();
for (int a = 0; a < len; a++) {
String tmp = "";
for (int b = 0; b < len; b++) {
tmp += mp[a][b];
}
list.add(tmp);
}
ans.add(list);
return;
}
dfs(mp,len,i+1,queen);
if (ok(mp, len, x, y)) {
mp[x][y] = 'Q';
dfs(mp, len, i + 1,queen+1);
mp[x][y] = '.';
} }
整合一下,最后的AC代码为:
class Solution {
List<List<String>> ans = new ArrayList<>(); public List<List<String>> solveNQueens(int n) { char mp[][] = new char[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
mp[i][j] = '.';
}
}
dfs(mp, n, 0,0); return ans;
} public void dfs(char[][] mp, int len, int i,int queen) {
int x = i / len;
int y = i % len; if ((x >= len || y >= len)) {
if(queen!=len) return;
List<String> list = new ArrayList<>();
for (int a = 0; a < len; a++) {
String tmp = "";
for (int b = 0; b < len; b++) {
tmp += mp[a][b];
}
list.add(tmp);
}
ans.add(list);
return;
}
dfs(mp,len,i+1,queen);
if (ok(mp, len, x, y)) {
mp[x][y] = 'Q';
dfs(mp, len, i + 1,queen+1);
mp[x][y] = '.';
} } public boolean ok(char[][] mp, int len, int x, int y) {
// check row
for (int i = 0; i < len; i++) {
if (i == y)
continue;
if (mp[x][i] == 'Q')
return false;
} // check col
for (int i = 0; i < len; i++) {
if (i == x)
continue;
if (mp[i][y] == 'Q')
return false;
} // x=1 y=3
int cnt = 0;
int up = 0;
int down = 0; for(int i=y+1;i<len;i++){
up = (++cnt)*-1+x;
down = cnt*1+x; if(up<len && up>=0){
//System.out.println("mp[up][i]=["+up+"]["+i+"]");
if(mp[up][i]=='Q')
return false;
} if(down>=0 && down<len){
//System.out.println("mp[down][i]=["+down+"]["+i+"]");
if(mp[down][i]=='Q'){
return false;
}
}
} //System.out.println("other");
cnt = 0;
for(int i=y-1;i>=0;i--){
up = (++cnt)*-1+x;
down = cnt*1+x; if(up<len && up>=0){
//System.out.println("mp[up][i]=["+up+"]["+i+"]");
if(mp[up][i]=='Q')
return false;
} if(down>=0 && down<len){
//System.out.println("mp[down][i]=["+down+"]["+i+"]");
if(mp[down][i]=='Q'){
return false;
}
}
} return true;
} }
Leetcode之回溯法专题-51. N皇后(N-Queens)的更多相关文章
- Leetcode之回溯法专题-52. N皇后 II(N-Queens II)
Leetcode之回溯法专题-52. N皇后 II(N-Queens II) 与51题的代码80%一样,只不过52要求解的数量,51求具体解,点击进入51 class Solution { int a ...
- Leetcode之回溯法专题-216. 组合总和 III(Combination Sum III)
Leetcode之回溯法专题-216. 组合总和 III(Combination Sum III) 同类题目: Leetcode之回溯法专题-39. 组合总数(Combination Sum) Lee ...
- Leetcode之回溯法专题-212. 单词搜索 II(Word Search II)
Leetcode之回溯法专题-212. 单词搜索 II(Word Search II) 给定一个二维网格 board 和一个字典中的单词列表 words,找出所有同时在二维网格和字典中出现的单词. 单 ...
- Leetcode之回溯法专题-131. 分割回文串(Palindrome Partitioning)
Leetcode之回溯法专题-131. 分割回文串(Palindrome Partitioning) 给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串. 返回 s 所有可能的分割方案. ...
- Leetcode之回溯法专题-90. 子集 II(Subsets II)
Leetcode之回溯法专题-90. 子集 II(Subsets II) 给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入 ...
- Leetcode之回溯法专题-79. 单词搜索(Word Search)
Leetcode之回溯法专题-79. 单词搜索(Word Search) 给定一个二维网格和一个单词,找出该单词是否存在于网格中. 单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元 ...
- Leetcode之回溯法专题-78. 子集(Subsets)
Leetcode之回溯法专题-78. 子集(Subsets) 给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: nums = ...
- Leetcode之回溯法专题-77. 组合(Combinations)
Leetcode之回溯法专题-77. 组合(Combinations) 给定两个整数 n 和 k,返回 1 ... n 中所有可能的 k 个数的组合. 示例: 输入: n = 4, k = 2 输 ...
- Leetcode之回溯法专题-47. 全排列 II(Permutations II)
Leetcode之回溯法专题-47. 全排列 II(Permutations II) 给定一个可包含重复数字的序列,返回所有不重复的全排列. 示例: 输入: [1,1,2] 输出: [ [1,1,2] ...
随机推荐
- Chrome离线安装包+谷歌访问助手
Chrome离线安装包+谷歌访问助手 所有chrome版本离线安装包下载地址 谷歌访问助手v2.3.0.crx(需要修改主页) 谷歌上网助手v1.4.3.crx(不用修改主页,需要注册) 两个插件为2 ...
- 小白学python-day06-
今天是day06,以下是学习内容总结: 但行努力,莫问前程. --------------------------------------------------------------------- ...
- 今天来聊Java ClassLoader
背景 类加载机制作为一个高频的面试题经常会在面试中被问到,前几天一个电话面试就问到,之前有了解过,但是没有梳理成自己的体系,所以说的有点凌乱,今天花点时间整理一下,分享给大家同时自己也好好梳理一下,顺 ...
- C语言编程入门之--第三章编写第一个C语言程序
第三章 编写第一个C语言程序 导读:一般学一门计算机语言的第一堂上机课(“上机”顾名思义,上了计算机),就是往屏幕输出“hello world”,本章也不例外. 1.1 Hello,World! 这一 ...
- java连接oracle数据库jdbc
driver = oracle.jdbc.driver.OracleDriver url = jdbc:oracle:thin:@localhost:1521:orcl
- Ubuntu18.04服务器使用netplan网络构建桥接kvm虚拟机
参考链接 Ubuntu 18.04 LTS安装KVM虚拟机 如何在 Ubuntu 18.04 服务器上安装和配置 KVM KVM日常管理和克隆 KVM详解 1.准备工作 首先需要检查一下CPU是否支持 ...
- ImageView 使用详解
极力推荐文章:欢迎收藏 Android 干货分享 阅读五分钟,每日十点,和您一起终身学习,这里是程序员Android 本篇文章主要介绍 Android 开发中的部分知识点,通过阅读本篇文章,您将收获以 ...
- Unity场景和代码合并以及UnityYAMLMerge的使用
1.首先是.gitignore的配置. # Folder config file Desktop.ini # Recycle Bin used on file shares $RECYCLE.BIN/ ...
- ccf 201809-4 再卖菜
这题一开始不知道剪枝这种操作,只会傻傻地dfs. 然后dfs递归写80分超时,非递归写70分超时(纳尼?我一直以为非递归算法在时间上会更优秀一些,为什么会这样?!!) 剪一下枝就都能过了 #inclu ...
- Spark 系列(十一)—— Spark SQL 聚合函数 Aggregations
一.简单聚合 1.1 数据准备 // 需要导入 spark sql 内置的函数包 import org.apache.spark.sql.functions._ val spark = SparkSe ...