更好的阅读体验

Portal

Portal1: Codeforces

Portal2: Luogu

Description

Recently Lynyrd and Skynyrd went to a shop where Lynyrd bought a permutation \(p\) of length \(n\), and Skynyrd bought an array \(a\) of length \(m\), consisting of integers from \(1\) to \(n\).

Lynyrd and Skynyrd became bored, so they asked you \(q\) queries, each of which has the following form: "does the subsegment of \(a\) from the \(l\)-th to the \(r\)-th positions, inclusive, have a subsequence that is a cyclic shift of \(p\)?" Please answer the queries.

A permutation of length \(n\) is a sequence of \(n\) integers such that each integer from \(1\) to \(n\) appears exactly once in it.

A cyclic shift of a permutation \((p_1, p_2, \ldots, p_n)\) is a permutation \((p_i, p_{i + 1}, \ldots, p_{n}, p_1, p_2, \ldots, p_{i - 1})\) for some \(i\) from \(1\) to \(n\). For example, a permutation \((2, 1, 3)\) has three distinct cyclic shifts: \((2, 1, 3)\), \((1, 3, 2)\), \((3, 2, 1)\).

A subsequence of a subsegment of array \(a\) from the \(l\)-th to the \(r\)-th positions, inclusive, is a sequence \(a_{i_1}, a_{i_2}, \ldots, a_{i_k}\) for some \(i_1, i_2, \ldots, i_k\) such that \(l \leq i_1 < i_2 < \ldots < i_k \leq r\).

Input

The first line contains three integers \(n\), \(m\), \(q\) (\(1 \le n, m, q \le 2 \cdot 10^5\)) — the length of the permutation \(p\), the length of the array \(a\) and the number of queries.

The next line contains \(n\) integers from \(1\) to \(n\), where the \(i\)-th of them is the \(i\)-th element of the permutation. Each integer from \(1\) to \(n\) appears exactly once.

The next line contains \(m\) integers from \(1\) to \(n\), the \(i\)-th of them is the \(i\)-th element of the array \(a\).

The next \(q\) lines describe queries. The \(i\)-th of these lines contains two integers \(l_i\) and \(r_i\) (\(1 \le l_i \le r_i \le m\)), meaning that the \(i\)-th query is about the subsegment of the array from the \(l_i\)-th to the \(r_i\)-th positions, inclusive.

Output

Print a single string of length \(q\), consisting of \(0\) and \(1\), the digit on the \(i\)-th positions should be \(1\), if the subsegment of array \(a\) from the \(l_i\)-th to the \(r_i\)-th positions, inclusive, contains a subsequence that is a cyclic shift of \(p\), and \(0\) otherwise.

Sample Input1

3 6 3
2 1 3
1 2 3 1 2 3
1 5
2 6
3 5

Sample Output1

110

Sample Input2

2 4 3
2 1
1 1 2 2
1 2
2 3
3 4

Sample Output2

010

Hint

In the first example the segment from the \(1\)-st to the \(5\)-th positions is \(1, 2, 3, 1, 2\). There is a subsequence \(1, 3, 2\) that is a cyclic shift of the permutation. The subsegment from the \(2\)-nd to the \(6\)-th positions also contains a subsequence \(2, 1, 3\) that is equal to the permutation. The subsegment from the \(3\)-rd to the \(5\)-th positions is \(3, 1, 2\), there is only one subsequence of length \(3\) (\(3, 1, 2\)), but it is not a cyclic shift of the permutation.

In the second example the possible cyclic shifts are \(1, 2\) and \(2, 1\). The subsegment from the \(1\)-st to the \(2\)-nd positions is \(1, 1\), its subsequences are not cyclic shifts of the permutation. The subsegment from the \(2\)-nd to the \(3\)-rd positions is \(1, 2\), it coincides with the permutation. The subsegment from the \(3\) to the \(4\) positions is \(2, 2\), its subsequences are not cyclic shifts of the permutation.

Solution

我们可以先预处理出\(a_i\)在\(p\)序列中的前一个数为\(\mathrm{last}_i\)。如果它能构成一个合法的循环序列,就代表它能够向前位移\(n - 1\)次\(\mathrm{last}\)。所以我们可以用倍增来解决。我们取一个最大的合法循环序列的头表示为\(\mathrm{b}_i\),那么最后的条件就是:

\[\max ^ {r} _ {i = l}{\mathrm{b}_i} \ge l
\]

满足就输出\(1\),否则输出\(0\)。

Code

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath> using namespace std; const int MAXN = 1000005, MAXM = 30;
int n, m, q, l, r, a[MAXN], b[MAXN], p[MAXN], last[MAXN], pos[MAXN], st[MAXN][MAXM];
inline int calc_step(int x) {
int s = 0;
for (int i = 25; i >= 0; i--)
if (s + (1 << i) < n) {
x = st[x][i];
s += 1 << i;
}
return x;
}
inline int query(int l, int r) {
int x = (int)log2(r - l + 1);
return max(st[l][x], st[r - (1 << x) + 1][x]);//询问ST表
}
int main() {
scanf("%d%d%d", &n, &m, &q);
for (int i = 1; i <= n; i++) {
scanf("%d", &p[i]);
pos[p[i]] = i;
}
for (int i = 1; i <= m; i++) {
scanf("%d", &a[i]);
if (pos[a[i]] == 1) st[i][0] = last[p[n]]; else st[i][0] = last[p[pos[a[i]] - 1]];
last[a[i]] = i;
}
for (int j = 1; j <= 25; j++)
for (int i = 1; i <= m; i++)
st[i][j] = st[st[i][j - 1]][j - 1];
for (int i = 1; i <= m; i++)
b[i] = calc_step(i);
memset(st, 0, sizeof(st));
for (int i = 1; i <= m; i++)
st[i][0] = b[i];
for (int j = 1; j <= (int)log2(m); j++)
for (int i = 1; i <= m - (1 << j) + 1; i++)
st[i][j] = max(st[i][j - 1], st[i + (1 << j - 1)][j - 1]);//ST表
for (int i = 1; i <= q; i++) {
scanf("%d%d", &l, &r);
if (query(l, r) >= l) printf("1"); else printf("0");
}
return 0;
}

『题解』Codeforces1142B Lynyrd Skynyrd的更多相关文章

  1. 『题解』洛谷P1063 能量项链

    原文地址 Problem Portal Portal1:Luogu Portal2:LibreOJ Portal3:Vijos Description 在\(Mars\)星球上,每个\(Mars\)人 ...

  2. 【题解】CF1142B Lynyrd Skynyrd(倍增)

    [题解]CF1142B Lynyrd Skynyrd(倍增) 调了一个小时原来是读入读反了.... 求子段是否存在一个排列的子序列的套路是把给定排列看做置换,然后让给定的序列乘上这个置换,问题就转化为 ...

  3. 『题解』Codeforces1142A The Beatles

    更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description Recently a Golden Circle of Beetlovers ...

  4. 『题解』洛谷P1993 小K的农场

    更好的阅读体验 Portal Portal1: Luogu Description 小\(K\)在\(\mathrm MC\)里面建立很多很多的农场,总共\(n\)个,以至于他自己都忘记了每个农场中种 ...

  5. 『题解』洛谷P2296 寻找道路

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 在有向图\(\mathrm G\)中,每条边的长度均为\(1\),现给定起点和终点 ...

  6. 『题解』洛谷P1351 联合权值

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 无向连通图\(\mathrm G\)有\(n\)个点,\(n - 1\)条边.点从 ...

  7. 『题解』Codeforces656E Out of Controls

    更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description You are given a complete undirected gr ...

  8. 『题解』洛谷P2170 选学霸

    更好的阅读体验 Portal Portal1: Luogu Description 老师想从\(N\)名学生中选\(M\)人当学霸,但有\(K\)对人实力相当,如果实力相当的人中,一部分被选上,另一部 ...

  9. 『题解』洛谷P1083 借教室

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Portal3: Vijos Description 在大学期间,经常需要租借教室.大到院系举办活动,小到 ...

随机推荐

  1. 【DP合集】合并 union

    给出一个 1 ∼ N 的序列 A ( A 1 , A 2 , ..., A N ) .你每次可以将两个相邻的元素合并,合并后的元素权值即为 这两个元素的权值之和.求将 A 变为一个非降序列,最少需要多 ...

  2. UDP方式的传输

    UDP 部分内容需要查文档学习,我们需要了解下面的两个类:java.net.DatagramSocket和java.net.DatagramPacket java.net.DatagramSocket ...

  3. 题解:2018级算法第二次上机 Zexal的流水线问题

    题目描述: 样例: 实现解释: 最基础的流水线调度问题,甚至没有开始和结束的值 实现方法即得出状态转移方程后完善即可,设a[][i]存储着第一二条线上各家的时间花费,t[][i]存储着i处进行线路切换 ...

  4. 解决Maven依赖jar包冲突总结

    maven导入jar包中的一些概念:      直接依赖:项目中直接导入的jar包,就是该项目的直接依赖包.      传递依赖:项目中没有直接导入的jar包,可以通过项目直接依赖jar包传递到项目中 ...

  5. python selenium之CSS定位

    ccs的优点:css相对xpath语法比xpath简洁,定位速度比xpath快 css的缺点:css不支持用逻辑运算符来定位,而xpath支持.css定位语法形式多样,相对xpath比较难记. css ...

  6. PHP array_unshift

    1.函数的作用:在数组的开头插入一个或者多个元素 2.函数的参数: @params  array  &$array @params  mixed $value1 @params  mixed ...

  7. go-接口-反射

    接口类型总是代表着某一种类型(即所有实现它的类型)的行为. 一个接口类型的声明通常会包含关键字type.类型名称.关键字interface以及由花括号包裹的若干方法声明. type Animal in ...

  8. 玩转OneNET物联网平台之MQTT服务④ —— 远程控制LED(设备自注册)+ Android App控制

    授人以鱼不如授人以渔,目的不是为了教会你具体项目开发,而是学会学习的能力.希望大家分享给你周边需要的朋友或者同学,说不定大神成长之路有博哥的奠基石... QQ技术互动交流群:ESP8266&3 ...

  9. Spring Boot - 访问外部接口最全总结

    Spring Boot - 访问外部接口 在Spring-Boot项目开发中,存在着本模块的代码需要访问外面模块接口,或外部url链接的需求, 比如调用外部的地图API或者天气API. Spring ...

  10. Git 项目提交新仓库

    提示:进入项目文件操作 步骤: 1.git init   ----------初始化git仓库 2.git remote add origin 你的项目地址  ------------------如: ...