E. Yet Another Division Into Teams

There are n students at your university. The programming skill of the i-th student is ai. As a coach, you want to divide them into teams to prepare them for the upcoming ICPC finals. Just imagine how good this university is if it has 2⋅105 students ready for the finals!

Each team should consist of at least three students. Each student should belong to exactly one team. The diversity of a team is the difference between the maximum programming skill of some student that belongs to this team and the minimum programming skill of some student that belongs to this team (in other words, if the team consists of k students with programming skills a[i1],a[i2],…,a[ik], then the diversity of this team is maxj=1ka[ij]−minj=1ka[ij]).

The total diversity is the sum of diversities of all teams formed.

Your task is to minimize the total diversity of the division of students and find the optimal way to divide the students.

Input

The first line of the input contains one integer n (3≤n≤2⋅105) — the number of students.

The second line of the input contains n integers a1,a2,…,an (1≤ai≤109), where ai is the programming skill of the i-th student.

Output

In the first line print two integers res and k — the minimum total diversity of the division of students and the number of teams in your division, correspondingly.

In the second line print n integers t1,t2,…,tn (1≤ti≤k), where ti is the number of team to which the i-th student belong.

If there are multiple answers, you can print any. Note that you don't need to minimize the number of teams. Each team should consist of at least three students.

Examples

input

5

1 1 3 4 2

output

3 1

1 1 1 1 1

input

6

1 5 12 13 2 15

output

7 2

2 2 1 1 2 1

input

10

1 2 5 129 185 581 1041 1909 1580 8150

output

7486 3

3 3 3 2 2 2 2 1 1 1

Note

In the first example, there is only one team with skills [1,1,2,3,4] so the answer is 3. It can be shown that you cannot achieve a better answer.

In the second example, there are two teams with skills [1,2,5] and [12,13,15] so the answer is 4+3=7.

In the third example, there are three teams with skills [1,2,5], [129,185,581,1041] and [1580,1909,8150] so the answer is 4+912+6570=7486.

题意

这个学校里面有n个学生,你需要给他们分成若干的队伍,每个队伍最少3个人。

每个队伍定义差异值是这个队伍最强的人和最弱的人的能力值差。

现在你需要构建若干个队伍,使得差异值的总和最小。

题解

我们先排序,那么分队伍一定是选择排序后的连续几个人组成一队。

然后每个队伍一定人数最多为5个人,因为6个人就可以拆成两队,然后两队的代价一定是比一个队伍的代价小。

然后就是个简单的dp了。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 200005;
int n;
pair<int,int> k[maxn];
int dp[maxn];
int p[maxn];
int fr[maxn];
int ans_pos[maxn];
int tot=0;
void dfs(int x){
if(x==0)return;
tot++;
p[x]=1;
dfs(fr[x]);
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&k[i].first);
k[i].second=i;
}
sort(k+1,k+1+n);
memset(dp,-1,sizeof(dp));
dp[0]=0;
dp[3]=k[3].first-k[1].first;
for(int i=4;i<=n;i++){
for(int j=3;j<=6;j++){
if(dp[i-j]!=-1){
if(dp[i]==-1){
dp[i]=dp[i-j]+k[i].first-k[i-j+1].first;
fr[i]=i-j;
}
else{
if(dp[i-j]+(k[i].first-k[i-j+1].first)<dp[i]){
fr[i]=i-j;
dp[i]=dp[i-j]+k[i].first-k[i-j+1].first;
}
}
}
}
} dfs(n);
cout<<dp[n]<<" "<<tot<<endl;
int tot2=1;
for(int i=1;i<=n;i++){
if(p[i]==0){
p[i]=tot2;
}else if(p[i]==1){
p[i]=tot2;
tot2++;
}
}
for(int i=1;i<=n;i++){
ans_pos[k[i].second]=p[i];
}
for(int i=1;i<=n;i++){
cout<<ans_pos[i]<<" ";
}
cout<<endl;
}

Codeforces Round #598 (Div. 3) E. Yet Another Division Into Teams dp的更多相关文章

  1. Codeforces Round #598 (Div. 3)- E. Yet Another Division Into Teams - 动态规划

    Codeforces Round #598 (Div. 3)- E. Yet Another Division Into Teams - 动态规划 [Problem Description] 给你\( ...

  2. 【CF1256】Codeforces Round #598 (Div. 3) 【思维+贪心+DP】

    https://codeforces.com/contest/1256 A:Payment Without Change[思维] 题意:给你a个价值n的物品和b个价值1的物品,问是否存在取物方案使得价 ...

  3. Codeforces Round #396 (Div. 2) A B C D 水 trick dp 并查集

    A. Mahmoud and Longest Uncommon Subsequence time limit per test 2 seconds memory limit per test 256 ...

  4. Codeforces Round #598 (Div. 3)E(dp路径转移)

    题:https://codeforces.com/contest/1256/problem/E 题意:给一些值,代表队员的能力值,每组要分3个或3个以上的人,然后有个评价值x=(队里最大值-最小值), ...

  5. Codeforces Round #598 (Div. 3)

    传送门 A. Payment Without Change 签到. Code /* * Author: heyuhhh * Created Time: 2019/11/4 21:19:19 */ #i ...

  6. Codeforces Round #598 (Div. 3) F. Equalizing Two Strings 构造

    F. Equalizing Two Strings You are given two strings s and t both of length n and both consisting of ...

  7. Codeforces Round #598 (Div. 3) D. Binary String Minimizing 贪心

    D. Binary String Minimizing You are given a binary string of length n (i. e. a string consisting of ...

  8. Codeforces Round #598 (Div. 3) C. Platforms Jumping 贪心或dp

    C. Platforms Jumping There is a river of width n. The left bank of the river is cell 0 and the right ...

  9. Codeforces Round #598 (Div. 3) B. Minimize the Permutation 贪心

    B. Minimize the Permutation You are given a permutation of length n. Recall that the permutation is ...

随机推荐

  1. kotlin之变量与常量

    版权声明:本文为xing_star原创文章,转载请注明出处! 本文同步自http://javaexception.com/archives/217 kotlin之变量与常量 最近开始做新产品,于是乎用 ...

  2. python将字符串插入表中避免单双引号问题

    调用pymysql.escape_string('向数据库插入的数据') 例如: import pymysql str = 'as"sdf' print(pymysql.escape_str ...

  3. 不同浏览器对cookie大小与个数的限制

    一.浏览器允许每个域名所包含的cookie数: Microsoft指出InternetExplorer8增加cookie限制为每个域名50个,但IE7似乎也允许每个域名50个cookie. Firef ...

  4. nova安装与配置

    一.实验目的: 1.理解nova服务在OpenStack中的作用 2.掌握在控制节点上安装配置nova的方法和步骤 3.掌握在计算节点上安装与配置nova的方法和步骤 二.实验步骤: 1.在contr ...

  5. Eureka集群

    Eureka集群搭建 高可用集群配置 当注册中心扛不住高并发的时候,这时候 要用集群来扛: 普通操作 我们再新建两个module  microservice-eureka-server-2002  m ...

  6. linux 源设置

    ubuntu 18.04.3 sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak cat > /etc/apt/sources.lis ...

  7. [译]Vulkan教程(23)暂存buffer

    [译]Vulkan教程(23)暂存buffer Staging buffer 暂存buffer Introduction 入门 The vertex buffer we have right now ...

  8. Springcloud 配置 | 史上最全,一文全懂

    Springcloud 高并发 配置 (一文全懂) 疯狂创客圈 Java 高并发[ 亿级流量聊天室实战]实战系列之15 [博客园总入口 ] 前言 疯狂创客圈(笔者尼恩创建的高并发研习社群)Spring ...

  9. leetcode-字符串篇

    Implement strStr() /** * Implement strStr(). *  * Return the index of the first occurrence of needle ...

  10. Swoole 启动一个服务,开启了哪些进程和线程?

    目录 概述 代码 小结 概述 Swoole 启动一个服务,开启了哪些进程和线程? 为了解决这个问题,咱们启动一个最简单的服务,一起看看究竟启动了哪些进程和线程? 然后结合官网运行流程图,对每个进程和线 ...