luoguP2178 [NOI2015]品酒大会(后缀数组做法)
题意
因为一个\(k\)相似必定为\(k-1,k-2....0\)相似,对于一个\(lcp\)为\(k\)后缀对\((i,j)\),我们只用把它的贡献加在\(k\)的答案上,最后求一个后缀和和后缀max就可以得到答案。
考虑如何快速计算后缀对的贡献:
因为后缀对\((i,j),i>j\)的\(lcp\)是\(min_{k=i+1}^{j}height_k\),因此考虑将\(height\)从大到小排序。
对于当前的\(height_i\),我们找到\(sa_{i-1}\)和\(sa_i\)所在后缀集合(一开始每个后缀是单独一个集合)。这时两个集合分别选两个后缀配对,\(lcp\)必定为\(height_i\),于是\(ans[height_i]\)就加上两集合大小的乘积,之后合并两个集合。第一问就做完了。
第二问只需要对每个集合维护最大值和最小值(负数乘负数会变成正数),合并时取个max即可。
code:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=3*1e5+10;
int n,num;
int fa[maxn],size[maxn];
ll a[maxn],maxx[maxn],minn[maxn],ans1[maxn],ans2[maxn];
char s[maxn];
struct node{int height,id;}h[maxn];
struct SA
{
int num;
int sa[maxn],rk[maxn],oldrk[maxn],id[maxn],tmpid[maxn],cnt[maxn],height[maxn];
inline bool check(int x,int y,int k){return oldrk[x]==oldrk[y]&&oldrk[x+k]==oldrk[y+k];}
inline void build(char* s,int len)
{
int num=300;
for(int i=1;i<=len;i++)cnt[rk[i]=s[i]]++;
for(int i=1;i<=num;i++)cnt[i]+=cnt[i-1];
for(int i=len;i;i--)sa[cnt[rk[i]]--]=i;
for(int t=1;t<=len;t<<=1)
{
int tot=0;
for(int i=len-t+1;i<=len;i++)id[++tot]=i;
for(int i=1;i<=len;i++)if(sa[i]>t)id[++tot]=sa[i]-t;
tot=0;
memset(cnt,0,sizeof(cnt));
for(int i=1;i<=len;i++)cnt[tmpid[i]=rk[id[i]]]++;
for(int i=1;i<=num;i++)cnt[i]+=cnt[i-1];
for(int i=len;i;i--)sa[cnt[tmpid[i]]--]=id[i];
memcpy(oldrk,rk,sizeof(rk));
for(int i=1;i<=len;i++)rk[sa[i]]=check(sa[i-1],sa[i],t)?tot:++tot;
num=tot;
if(num==len)break;
}
for(int i=1,j=0;i<=len;i++)
{
if(j)j--;
while(s[i+j]==s[sa[rk[i]-1]+j])j++;
height[rk[i]]=j;
}
}
}Sa;
inline ll read()
{
char c=getchar();ll res=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9')res=res*10+c-'0',c=getchar();
return res*f;
}
inline bool cmp(node x,node y){return x.height>y.height;}
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
inline void merge(int x,int y,int k)
{
int p=find(x),q=find(y);
if(size[p]>size[q])swap(p,q);
ans1[k]+=1ll*size[p]*size[q];
ans2[k]=max(ans2[k],max(maxx[p]*maxx[q],minn[p]*minn[q]));
minn[q]=min(minn[q],minn[p]);
maxx[q]=max(maxx[q],maxx[p]);
fa[p]=q;size[q]+=size[p];
}
int main()
{
n=read();
scanf("%s",s+1);
Sa.build(s,n);
for(int i=1;i<=n;i++)a[i]=read();
for(int i=1;i<=n;i++)fa[i]=i,size[i]=1,maxx[i]=minn[i]=a[i];
for(int i=2;i<=n;i++)h[i]=(node){Sa.height[i],i};
sort(h+2,h+n+1,cmp);
memset(ans2,-0x3f,sizeof(ans2));
for(int i=2;i<=n;i++)merge(Sa.sa[h[i].id-1],Sa.sa[h[i].id],h[i].height);
for(int i=n-1;~i;i--)ans1[i]+=ans1[i+1],ans2[i]=max(ans2[i],ans2[i+1]);
for(int i=0;i<n;i++)
if(ans1[i])printf("%lld %lld\n",ans1[i],ans2[i]);
else puts("0 0");
return 0;
}
luoguP2178 [NOI2015]品酒大会(后缀数组做法)的更多相关文章
- BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]
4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...
- [UOJ#131][BZOJ4199][NOI2015]品酒大会 后缀数组 + 并查集
[UOJ#131][BZOJ4199][NOI2015]品酒大会 试题描述 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品酒家”和“首席猎手”两个 ...
- 【BZOJ4199】[Noi2015]品酒大会 后缀数组+并查集
[BZOJ4199][Noi2015]品酒大会 题面:http://www.lydsy.com/JudgeOnline/wttl/thread.php?tid=2144 题解:听说能用SAM?SA默默 ...
- [NOI2015] 品酒大会 - 后缀数组,并查集,STL,启发式合并
[NOI2015] 品酒大会 Description 对于每一个 \(i \in [0,n)\) 求有多少对后缀满足 LCP 长度 \(\le i\) ,并求满足条件的两个后缀权值乘积的最大值. So ...
- BZOJ.4199.[NOI2015]品酒大会(后缀数组 单调栈)
BZOJ 洛谷 后缀自动机做法. 洛谷上SAM比SA慢...BZOJ SAM却能快近一倍... 显然只需要考虑极长的相同子串的贡献,然后求后缀和/后缀\(\max\)就可以了. 对于相同子串,我们能想 ...
- NOI2015品酒大会 后缀数组
自己尝试敲后缀数组,发现难看(tiao)的不行,于是抄了板子 考虑建出hei以后转化出的问题: 对于一个数组中权值大于等于k的连续部分,求取两个数的方案数和两数积的最大值 (好气啊,可以有负数) 把询 ...
- BZOJ 4199: [Noi2015]品酒大会( 后缀数组 + 并查集 )
求出后缀数组后, 对height排序, 从大到小来处理(r相似必定是0~r-1相似), 并查集维护. 复杂度O(NlogN + Nalpha(N)) ------------------------- ...
- luoguP2178 [NOI2015]品酒大会(后缀自动机)
题意 承接上篇题解 考虑两个后缀的\(lcp\)是什么,是将串反着插入后缀自动机后两个前缀(终止节点)的\(lca\)!!!于是可以在parent tree上DP了. 比后缀数组又简单又好写跑的还快. ...
- 【学术篇】NOI2015 品酒大会 后缀数组+并查集
省选前大致是刷不了几道题了... 所以就找一些裸一点的题目练练板子算了= = 然而这题一点都不裸, 也并不怎么好写... 于是就浪费了将近一下午的时间... 然而还不是因为后缀数组板子不熟= = 首先 ...
随机推荐
- golang数据结构之插入排序
//InsertSort 插入排序 func InsertSort(arr *[]int) { ; i < len(arr); i++ { insertVal := (*arr)[i] inse ...
- 记一次feign的问题排查(短路、线程池、队列)
https://www.jianshu.com/p/f7fb59f43485 昨天开了一百个线程采用feign去请求第三方项目,结果报错,出现了短路,大概是下面这样的.(feign整合了hystrix ...
- 【51Nod1769】Clarke and math2(数论,组合数学)
[51Nod1769]Clarke and math2(数论,组合数学) 题面 51Nod 题解 考虑枚举一个\(i_k\),枚举一个\(i\),怎么计算\(i_k\)对\(i\)的贡献. 把\(\f ...
- .net core 的 aop 实现方法汇总
decorator 不借助第三方DI容器,通过装饰模式通过内置的DI容器实现 https://medium.com/@willie.tetlow/net-core-dependency-injecti ...
- Kafka生产消费API JAVA实现
Maven依赖: <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka- ...
- SpringBoot(16)—@ConditionalOnBean与@ConditionalOnClass
@ConditionalOnBean与@ConditionalOnClass 上一篇讲的@Conditional可以通过条件控制是否注入Bean,这篇讲下有关Bean其它几个常用的注解使用方式 @Co ...
- wpf file embeded resource is readonly,Copy always will copy the file and its folder to the bin folder
Wpf file embeded resource will compile the file into the assembly and it will be readonly and can no ...
- Fiddler 插件开发,使用 WPF 作为 UI 控件
Fiddler 插件的 UI,本身使用的 WinForm,这个例子是使用 WinForm 中的 WPF 容器,将 WPF 控件作为 Fiddler 插件的 UI 使用. 为什么使用 WPF ?为了自适 ...
- python库的tkinter带你进入GUI世界(计算器简单功能)
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 一个处女座的程序猿 PS:如有需要Python学习资料的小伙伴可以加 ...
- rsync 未授权访问漏洞
rsync rsync,remote synchronize顾名思意就知道它是一款实现远程同步功能的软件,它在同步文件的同时,可以保持原来文件的权限.时间.软硬链接等附加信息. rsync是用 &qu ...