Elasticsearch Lucene 数据写入原理 | ES 核心篇
前言
最近 TL 分享了下 《Elasticsearch基础整理》https://www.jianshu.com/p/e8226138485d ,蹭着这个机会。写个小文巩固下,本文主要讲 ES -> Lucene
的底层结构,然后详细描述新数据写入 ES 和 Lucene 的流程和原理。这是基础理论知识,整理了一下,希望能对 Elasticsearch 感兴趣的同学有所帮助。
一、Elasticsearch & Lucene 是什么
什么是 Elasticsearch ?
Elasticsearch 是一个基于 Apache Lucene(TM) 的开源搜索引擎。
那 Lucene 是什么?
无论在开源还是专有领域,Lucene 可以被认为是迄今为止最先进、性能最好的、功能最全的搜索引擎库,并通过简单的 RESTful API 来隐藏 Lucene 的复杂性,从而让全文搜索变得简单。
Elasticsearch 不仅仅是 Lucene 和全文搜索,我们还能这样去描述它:
- 分布式的实时文件存储,每个字段都被索引并可被搜索
- 分布式的实时分析搜索引擎
- 可以扩展到上百台服务器,处理 PB 级结构化或非结构化数据
二、Elasticsearch & Lucene 的关系
就像很多业务系统是基于 Spring 实现一样,Elasticsearch 和 Lucene 的关系很简单:Elasticsearch 是基于 Lucene 实现的。ES 基于底层这些包,然后进行了扩展,提供了更多的更丰富的查询语句,并且通过 RESTful API 可以更方便地与底层交互。类似 ES 还有 Solr 也是基于 Lucene 实现的。
在应用开发中,用 Elasticsearch 会很简单。但是如果你直接用 Lucene,会有大量的集成工作。
因此,入门 ES 的同学,稍微了解下 Lucene 即可。如果往高级走,还是需要学习 Lucene 底层的原理。因为倒排索引、打分机制、全文检索原理、分词原理等等,这些都是不会过时的技术。
三、新文档写入流程
3.1 数据模型
如图
- 一个 ES Index (索引,比如商品搜索索引、订单搜索索引)集群下,有多个 Node (节点)组成。每个节点就是 ES 的实例。
- 每个节点上会有多个 shard (分片), P1 P2 是主分片 R1 R2 是副本分片
- 每个分片上对应着就是一个 Lucene Index(底层索引文件)
- Lucene Index 是一个统称。由多个 Segment (段文件,就是倒排索引)组成。每个段文件存储着就是 Doc 文档。
3.2 Lucene Index
lucene 中,单个倒排索引文件称为 segment。其中有一个文件,记录了所有 segments 的信息,称为 commit point:
- 文档 create 新写入时,会生成新的 segment。同样会记录到 commit point 里面
- 文档查询,会查询所有的 segments
- 当一个段存在文档被删除,会维护该信息在 .liv 文件里面
3.3 新文档写入流程
新文档创建或者更新时,进行如下流程:
更新不会修改原来的 segment,更新和创建操作都会生成新的一个 segment。数据哪里来呢?先会存在内存的 bugger 中,然后持久化到 segment 。
数据持久化步骤如下:write -> refresh -> flush -> merge
3.3.1 write 过程
一个新文档过来,会存储在 in-memory buffer 内存缓存区中,顺便会记录 Translog。
这时候数据还没到 segment ,是搜不到这个新文档的。数据只有被 refresh 后,才可以被搜索到。那么 讲下 refresh 过程
3.3.2 refresh 过程
refresh 默认 1 秒钟,执行一次上图流程。ES 是支持修改这个值的,通过 index.refresh_interval 设置 refresh (冲刷)间隔时间。refresh 流程大致如下:
- in-memory buffer 中的文档写入到新的 segment 中,但 segment 是存储在文件系统的缓存中。此时文档可以被搜索到
- 最后清空 in-memory buffer。注意: Translog 没有被清空,为了将 segment 数据写到磁盘
文档经过 refresh 后, segment 暂时写到文件系统缓存,这样避免了性能 IO 操作,又可以使文档搜索到。refresh 默认 1 秒执行一次,性能损耗太大。一般建议稍微延长这个 refresh 时间间隔,比如 5 s。因此,ES 其实就是准实时,达不到真正的实时。
3.3.3 flush 过程
上个过程中 segment 在文件系统缓存中,会有意外故障文档丢失。那么,为了保证文档不会丢失,需要将文档写入磁盘。那么文档从文件缓存写入磁盘的过程就是 flush。写入次怕后,清空 translog。
translog 作用很大:
- 保证文件缓存中的文档不丢失
- 系统重启时,从 translog 中恢复
- 新的 segment 收录到 commit point 中
具体可以看官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/7.3/indices-flush.html
3.3.4 merge 过程
上面几个步骤,可见 segment 会越来越多,那么搜索会越来越慢?怎么处理呢?
通过 merge 过程解决:
- 就是各个小段文件,合并成一个大段文件。段合并过程
- 段合并结束,旧的小段文件会被删除
- .liv 文件维护的删除文档,会通过这个过程进行清除
四、小结
如这个图,ES 写入原理不难,记住关键点即可。
write -> refresh -> flush
- write:文档数据到内存缓存,并存到 translog
- refresh:内存缓存中的文档数据,到文件缓存中的 segment 。此时可以被搜到
- flush 是缓存中的 segment 文档数据写入到磁盘
写入的原理告诉我们,考虑的点很多:性能、数据不丢失等等
(完)
参考资料:
Java微服务资料,加我微w信x:bysocket01 (加的人,一般很帅)
- 《深入理解 Elasticsearch》
- https://lucene.apache.org/core/8_2_0/core/org/apache/lucene/codecs/lucene80/package-summary.html#package.description
- https://www.jianshu.com/p/e8226138485d
Elasticsearch Lucene 数据写入原理 | ES 核心篇的更多相关文章
- Elasticsearch准实时索引实现(数据写入到es分片并存储到文件中的过程)
溢写到文件系统缓存 当数据写入到ES分片时,会首先写入到内存中,然后通过内存的buffer生成一个segment,并刷到文件系统缓存中,数据可以被检索(注意不是直接刷到磁盘) ES中默认1秒,refr ...
- elasticsearch的数据写入流程及优化
Elasticsearch 写入流程及优化 一. 集群分片设置:ES一旦创建好索引后,就无法调整分片的设置,而在ES中,一个分片实际上对应一个lucene 索引,而lucene索引的读写会占用很多的系 ...
- Elasticsearch(GEO)数据写入和空间检索
Elasticsearch简介 什么是 Elasticsearch? Elasticsearch 是一个开源的分布式 RESTful搜索和分析引擎,能够解决越来越多不同的应用场景. 本文内容 本文主要 ...
- Flink 实践教程 - 入门(4):读取 MySQL 数据写入到 ES
作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发.无缝连接. ...
- 如何将爬取的数据写入ES中
前面章节一直在说ES相关知识点,现在是如何实现将爬取到的数据写入到ES中,首先的知道ES的python接口叫elasticsearch dsl 链接:https://github.com/elasti ...
- ElasticSearch 学习记录之 分布式文档存储往ES中存数据和取数据的原理
分布式文档存储 ES分布式特性 屏蔽了分布式系统的复杂性 集群内的原理 垂直扩容和水平扩容 真正的扩容能力是来自于水平扩容–为集群添加更多的节点,并且将负载压力和稳定性分散到这些节点中 ES集群特点 ...
- elasticsearch备份与恢复4_使用ES-Hadoop将ES中的索引数据写入HDFS中
背景知识见链接:elasticsearch备份与恢复3_使用ES-Hadoop将HDFS数据写入Elasticsearch中 项目参考<Elasticsearch集成Hadoop最佳实践> ...
- Elasticsearch原理学习--为什么Elasticsearch/Lucene检索可以比MySQL快?
转载于:http://vlambda.com/wz_wvS2uI5VRn.html 同样都可以对数据构建索引并通过索引查询数据,为什么Lucene或基于Lucene的Elasticsearch会比关系 ...
- ES核心概念和原理
ES:1:倒排索引 基于Document 关键词索引实现 . 根据关键词做索引 相关度 a. 数据结构 i. 包含关键词的Document List ii. 关键词在每个doc中出现的次数 词频 TF ...
随机推荐
- 【POJ - 3050】Hopscotch (dfs+回溯)
-->Hopscotch 这接写中文了 Descriptions: 奶牛们以一种独特的方式玩孩子们的跳房子游戏. 奶牛们创造了一个5x5的格子 他们熟练地跳上其中的一个格子,可以前后左右地跳(不 ...
- 浅入深出Vue:发布项目
项目完成之后,当然不能满足于在我们的开发环境下跑一跑.我们可以打包发布到服务器上,让大家一起来欣赏一下你的作品. 那么 vue 项目如何打包发布呢,新建的项目目录下通常都有一个 README.md 的 ...
- P2344 奶牛抗议 离散化+前缀和+动态规划+树状数组
[题目背景] Generic Cow Protests, 2011 Feb [题目描述] 约翰家的N 头奶牛正在排队游行抗议.一些奶牛情绪激动,约翰测算下来,排在第i 位的奶牛的理智度为Ai,数字可正 ...
- windows登陆suse虚拟机
vmware我还是比较偏向7.1.4版本,其他版本装在win7上似乎有点问题. windows平台下,使用vmware + opensuse的网络配置过程如下: 装完vm后,会在本地连接新创建两个新连 ...
- CAD2014学习笔记-常用绘图命令和工具
基于 虎课网huke88.com CAD教程 圆的绘制 快捷键c:选定圆心绘制半径长度的圆 快捷键c + 命令行输入 3p(三点成圆) 2p(两点成圆) t(选定两个圆的切点绘制与两圆相切的圆,第三部 ...
- 转载《Flex 布局》
网页布局(layout)是 CSS 的一个重点应用. 布局的传统解决方案,基于盒状模型,依赖 display 属性 + position属性 + float属性.它对于那些特殊布局非常不方便,比如,垂 ...
- SpringBoot快速入门01--环境搭建
SpringBoot快速入门--环境搭建 1.创建web工程 1.1 创建新的工程. 1.2 选择maven工程,点击下一步. 1.3 填写groupid(maven的项目名称)和artifacti ...
- 【CYH-02】noip2018数论模拟赛:比赛通知栏
鉴于公开赛有时可能无法更改比赛描述呢... 所以我们准备在这里(和团队宣言里)发布一些比赛公告. 请及时关注
- TCP概述\三次握手四次挥手\报文首部,常用熟知端口号
06.26自我总结 1.TCP概述 TCP把连接作为最基本的对象,每一条TCP连接都有两个端点,这种端点我们叫作套接字(socket),它的定义为端口号拼接到IP地址即构成了套接字,例如,若IP地址为 ...
- [重磅开源] 比SingleR更适合的websocket 即时通讯组件---ImCore开源了
有感而发 为什么说 SignalR 不合适做 IM? IM 的特点必定是长连接,轮训的功能用不上. 因为它是双工通讯的设计,用hub.invoke发送命令给服务端处理业务,其他就和 ajax 差不多, ...