rocksdb和leveldb性能比较——写性能
前面学习了一下rocksdb,这个db是对leveldb的一个改进,是基于leveldb1.5的版本上的改进,而且leveldb1.5以后也在不断的优化,下面从写入性能对两者进行对比。
前言
比较的leveldb的版本是1.18,rocksdb的版本是3.10.1.
在比较的时候需要将leveldb和rocksdb的参数调成一样的,本文的参数为,
memtable 4M,最多2个memtable
level0_slowdown_writes_trigger=8,level0_stop_writes_trigger=12,level0_file_num_compaction_trigger=4,
flush和compaction共用一个进程
leveldb和rocksdb在后台进程管理的默认配置也是不一样的,leveldb默认只能有一个后台进程用于flush和compaction,而rocksdb flush和compaction都会有一个进程,本文特殊没有说明的rocksdb就是和leveldb一样的,flush和compaction共用一个进程
场景1
每个key 8byte,没有value
这个场景在关系链系统里面非常常见,因为关系链系统是key-list,使用leveldb类似系统实现的时候,需要将list中的id提到key里面
得到的测试结果如下:
leveldb | rocksdb | |
请求数 | 10000000 | 10000000 |
数据量 | 80M | 80M |
耗时s | 56 | 73 |
吞吐量(Mps) | 1.428571429 | 1.095890411 |
qps | 178571.4286 | 136986.3014 |
是否发生stall | 否 | 否 |
结论是leveldb比rocksdb要略胜一筹,由于value为空,整个的吞吐量和磁盘的吞吐量(100Mps到150Mps)还相差比较远,所以并没有发生写stall的情况。因为没有发生stall,所以性能对比完全是内存操作的性能的对比。
这个场景比的主要是内存的写操作速度,可以看出leveldb要好一些。
因为主要是内存操作,内存操作没有log,(加上log会严重影响性能),猜测的原因可能是:
- leveldb的skiplist的原子指针用的是memory barrier实现的,而rocksdb使用的atomic实现的。
- rocksdb采用了很多虚函数的地方,性能有可能比leveldb要差一些。
场景2
每个key 8byte,value 1000byte。
leveldb | rocksdb(flush和compaction共用线程) | rocksdb(flush和compaction分开线程) | |
请求数 | 1000000 | 1000000 | 1000000 |
数据量 | 1G | 1G | 1G |
耗时s | 70 | 138 | 125 |
吞吐量(Mps) | 14.62857143 | 7.420289855 | 8.192 |
qps | 14285.71429 | 7246.376812 | 8000 |
是否发生stall | 是 | 是 | 是 |
结论仍然是leveldb要更好一些,具体查看LOG文件,可以看出端倪,rocksdb的最后的level分布是:[6 359 148 0 0 0 0],level1文件严重超出范围,这样level0的文件并到level1上的时候就需要读入非常多的文件。咋
其中一次8个level0的319个level1的文件进行一次compaction,花费的时间可想而知。
那么为什么会这样呢?因为rocksdb在挑选compaction的时候,如果level0的文件数目超出level0_slowdown_writes_trigger的时候得分异常高,所以会一直发生level0向level1转移的情况,没有机会level1向level2转移。在这种情况下rocksdb就走向了深渊。。。。leveldb挑选compaction的时候,level0的分值是文件数目除以kL0_CompactionTrigger,其他level的分值是该level的总文件大小除以这个level的最大byte
当rocksdb的flush和compaction分为两个进程的时候时间稍有减少,可以看出效果很不明显。这个原因是磁盘是瓶颈,分为两个进程并不能提高磁盘的吞吐量。
结论
从这个比较中可以看出,在写量非常大的时候,leveldb的性能还是要优于rocksdb的
rocksdb和leveldb性能比较——写性能的更多相关文章
- 提高HBase写性能
以下为使用hbase一段时间的三个思考,由于在内存充足的情况下hbase能提供比较满意的读性能,因此写性能是思考的重点.希望读者提出不同意见讨论 1 autoflush=false的影响 无论是官方还 ...
- HBase最佳实践-写性能优化策略
本篇文章来说道说道如何诊断HBase写数据的异常问题以及优化写性能.和读相比,HBase写数据流程倒是显得很简单:数据先顺序写入HLog,再写入对应的缓存Memstore,当Memstore中数据大小 ...
- cassandra mongodb选择——cassandra:分布式扩展好,写性能强,以及可以预料的查询;mongodb:非事务,支持复杂查询,但是不适合报表
Of course, like any technology MongoDB has its strengths and weaknesses. MongoDB is designed for OLT ...
- mongodb官网文档阅读笔记:与写性能相关的几个因素
Indexes 和全部db一样,索引肯定都会引起写性能的下降,mongodb也没啥特别的,相对索引对读性能的提示,这些消耗通常是能够接受的,所以该加入的索引还是要加入.当然须要慎重一些.扯点远的,以前 ...
- 漫谈linux之文件IO篇(SSD写性能和机械硬盘差不多,读是4到10倍)
前同事的文章,觉得写得很清晰,收藏了. http://blog.chinaunix.net/uid-27105712-id-3270102.html 在Linux 开发中,有几个关系到性能的东西,技术 ...
- 存算分离下写性能提升10倍以上,EMR Spark引擎是如何做到的?
引言 随着大数据技术架构的演进,存储与计算分离的架构能更好的满足用户对降低数据存储成本,按需调度计算资源的诉求,正在成为越来越多人的选择.相较 HDFS,数据存储在对象存储上可以节约存储成本,但与此 ...
- 提高 web 应用性能之 CSS 性能调优
简介 Web 开发中经常会遇到性能的问题,尤其是 Web 2.0 的应用.CSS 代码是控制页面显示样式与效果的最直接“工具”,但是在性能调优时他们通常被 Web 开发工程师所忽略,而事实上不规范的 ...
- ELK 性能(1) — Logstash 性能及其替代方案
ELK 性能(1) - Logstash 性能及其替代方案 介绍 当谈及集中日志到 Elasticsearch 时,首先想到的日志传输(log shipper)就是 Logstash.开发者听说过它, ...
- Java程序性能优化之性能概述
性能的基本概念 一).什么叫程序的性能? 程序运行所需的内存和时间. 二).性能的表现形式: 1).执行速度: 程序的反应是否迅速,响应时间是否足够短. 2).启动时间:程序从运行到可以处理正常业务所 ...
随机推荐
- OpenCV:图像的按位运算
首先导包: import numpy as np import cv2 import matplotlib.pyplot as plt def show(image): plt.imshow(imag ...
- LeetCode刷题191120
博主渣渣一枚,刷刷leetcode给自己瞅瞅,大神们由更好方法还望不吝赐教.题目及解法来自于力扣(LeetCode),传送门. 算法: 给出两个 非空 的链表用来表示两个非负的整数.其中,它们各自的位 ...
- Http相关小知识点笔记咯~
协议 先来说说什么是协议,协议其实指的是通信协议(Communications Protocol),也称传输协议.Wiki中的描述的是这样的,通信协议定义了通信中的语法学,语义学和同步规则以及可能存在 ...
- 部署web01,web02,nfs,db01,backup,搭建wordpress,WeCenter,实现共享,热备,实时备份
小结 部署web01,web02,nfs,db01,backup,搭建wordpress,WeCenter,实现共享,热备,实时备份 1)在web01和web02上安装nginx和php 2)创建ww ...
- spark利用yarn提交任务报:YARN application has exited unexpectedly with state UNDEFINED
spark用yarn提交任务会报ERROR cluster.YarnClientSchedulerBackend: YARN application has exited unexpectedly w ...
- SPA项目之CRUD+表单验证
1. 表单验证 Form组件提供了表单验证的功能,只需要通过 rules 属性传入约定的验证规则, 并将Form-Item的prop属性设置为需校验的字段名即可 <el-dialog :titl ...
- 四、排序算法总结二(归并排序)(C++版本)
一.什么是归并排序? 归并排序是基于分而治之的思想建立起来的. 所谓的分而治之,也就是将一个数据规模为N的数据集,分解为两个规模大小差不多的数据集(n/2),然而分别处理这两个更小的问题,就相当于解决 ...
- vmware workstations 虚拟机安装CentOS
1.下载vmware ,我的版本是从上学时保存网盘的,版本比较低,链接如下: 链接:https://pan.baidu.com/s/19QP0q8xmPWIPn-rziPTvKg 提取码:lvh9 2 ...
- C++ 堆&栈等的说明
Stack 堆 存在于某作用域内的一块空间.说白了就是函数产生的空间,用于存放函数的变量.返回地址. 在函数体中声明的局部变量,就时存储在Stack中. Heap 栈 由操作系统提供的全局空间.在程序 ...
- vue项目实现路由按需加载的3种方式
vue异步组件技术 ==== 异步加载vue-router配置路由 , 使用vue的异步组件技术 , 可以实现按需加载 .但是,这种情况下一个组件生成一个js文件 /* vue异步组件技术 */ { ...