链接:https://www.nowcoder.com/acm/contest/141/J
来源:牛客网

Eddy has graduated from college. Currently, he is finding his future job and a place to live. Since Eddy is currently living in Tien-long country, he wants to choose a place inside Tien-long country to live. Surprisingly, Tien-long country can be represented as a simple polygon on 2D-plane. More surprisingly, Eddy can choose any place inside Tien-long country to live. The most important thing Eddy concerns is the distance from his place to the working place. He wants to live neither too close nor too far to the working place. The more specific definition of "close" and "far" is related to working place.

Eddy has M choices to work in the future. For each working place, it can be represented as a point on 2D-plane. And, for each working place, Eddy has two magic parameters P and Q such that if Eddy is going to work in this place, he will choose a place to live which is closer to the working place than portion of all possible living place choices.

Now, Eddy is wondering that for each working place, how far will he lives to the working place. Since Eddy is now busy on deciding where to work on, you come to help him calculate the answers.

For example, if the coordinates of points of Tien-long country is (0,0), (2,0), (2, 2), (0, 2) in counter-clockwise order. And, one possible working place is at (1,1) and P=1, Q=2. Then, Eddy should choose a place to live which is closer to (1, 1) than half of the choices. The distance from the place Eddy will live to the working place will be about 0.7978845608.

输入描述:

The first line contains one positive integer N indicating the number of points of the polygon representing Tien-long country.
Each of following N lines contains two space-separated integer (x

i

, y

i

) indicating the coordinate of i-th points. These points is given in clockwise or counter-clockwise order and form the polygon.
Following line contains one positive integer M indicating the number of possible working place Eddy can choose from.
Each of following M lines contains four space-separated integer x

j

, y

j

, P, Q, where (x

j

, y

j

) indicating the j-th working place is at (x

j

, y

j

) and magic parameters is P and Q.
3 ≤ N ≤ 200
1 ≤ M ≤ 200
1 ≤ P < Q ≤ 200
|x

i

|, |y

i

|, |x

j

|, |y

j

| ≤ 103
It's guaranteed that the given points form a simple polygon.

输出描述:

Output M lines. For i-th line, output one number indicating the distance from the place Eddy will live to the i-th working place.

Absolutely or relatively error within 10-6
 will be considered correct.

输入例子:
4
0 0
2 0
2 2
0 2
1
1 1 1 2
输出例子:
0.797884560809

-->

示例1

输入

复制

4
0 0
2 0
2 2
0 2
1
1 1 1 2

输出

复制

0.797884560809
示例2

输入

复制

3
0 0
1 0
2 1
2
0 0 1 2
1 1 1 3

输出

复制

1.040111537176
0.868735603376
题意:给你一个多变形,再给你几个圆心点,问每个圆心点的半径为多少时,圆的面积为多边形面积的(1-p/q)

分析:一个多边形与圆相交的模板题,求圆心点半径的时候二分就行,限制二分次数保证精度

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib> using namespace std; const double eps = 1e-9;
const double PI = acos(-1.0); int dcmp(double x)
{
if( x > eps ) return 1;
return x < -eps ? -1 : 0;
} struct Point
{
double x,y;
Point()
{
x = y = 0;
}
Point(double a,double b)
{
x = a;
y = b;
}
inline void input()
{
scanf("%lf%lf",&x,&y);
}
inline Point operator-(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
inline Point operator+(const Point &b)const
{
return Point(x + b.x,y + b.y);
}
inline Point operator*(const double &b)const
{
return Point(x * b,y * b);
}
inline double dot(const Point &b)const
{
return x * b.x + y * b.y;
}
inline double cross(const Point &b,const Point &c)const
{
return (b.x - x) * (c.y - y) - (c.x - x) * (b.y - y);
}
inline double Dis(const Point &b)const
{
return sqrt((*this-b).dot(*this-b));
}
inline bool InLine(const Point &b,const Point &c)const //三点共线
{
return !dcmp(cross(b,c));
}
inline bool OnSeg(const Point &b,const Point &c)const //点在线段上,包括端点
{
return InLine(b,c) && (*this - c).dot(*this - b) < eps;
}
int operator^(const Point &b) const
{
return y*b.x-x*b.y;
}
}; inline double min(double a,double b)
{
return a < b ? a : b;
}
inline double max(double a,double b)
{
return a > b ? a : b;
}
inline double Sqr(double x)
{
return x * x;
}
inline double Sqr(const Point &p)
{
return p.dot(p);
} Point LineCross(const Point &a,const Point &b,const Point &c,const Point &d)
{
double u = a.cross(b,c), v = b.cross(a,d);
return Point((c.x * v + d.x * u) / (u + v), (c.y * v + d.y * u) / (u + v));
} double LineCrossCircle(const Point &a,const Point &b,const Point &r,
double R,Point &p1,Point & p2)
{
Point fp = LineCross(r, Point(r.x+a.y-b.y, r.y+b.x-a.x), a, b);
double rtol = r.Dis(fp);
double rtos = fp.OnSeg(a, b) ? rtol : min(r.Dis(a), r.Dis(b));
double atob = a.Dis(b);
double fptoe = sqrt(R * R - rtol * rtol) / atob;
if( rtos > R - eps ) return rtos;
p1 = fp + (a - b) * fptoe;
p2 = fp + (b - a) * fptoe;
return rtos;
} double SectorArea(const Point &r,const Point &a,const Point &b,double R) //不大于180度扇形面积,r->a->b逆时针
{
double A2 = Sqr(r - a), B2 = Sqr(r - b), C2 = Sqr(a - b);
return R * R * acos( (A2 + B2 - C2) * 0.5 / sqrt(A2) / sqrt(B2)) * 0.5;
} double TACIA(const Point &r,const Point &a,const Point &b,double R)
{
double adis = r.Dis(a), bdis = r.Dis(b);
if( adis < R + eps && bdis < R + eps )
return r.cross(a, b) * 0.5;
Point ta, tb;
if( r.InLine(a,b) ) return 0.0;
double rtos = LineCrossCircle(a, b, r, R, ta, tb);
if( rtos > R - eps )
return SectorArea(r, a, b, R);
if( adis < R + eps )
return r.cross(a, tb) * 0.5 + SectorArea(r, tb, b, R);
if( bdis < R + eps )
return r.cross(ta, b) * 0.5 + SectorArea(r, a, ta, R);
return r.cross(ta, tb) * 0.5 + SectorArea(r, tb, b, R) + SectorArea(r, a, ta, R);
} const int MAXN = 505;
Point p[MAXN]; double SPICA(int n,Point r,double R)
{
int i;
double ret = 0, if_clock_t;
for( i = 0 ; i < n ; ++i )
{
if_clock_t = dcmp(r.cross(p[i], p[(i + 1) % n]));
if( if_clock_t < 0 )
ret -= TACIA(r, p[(i + 1) % n], p[i], R);
else ret += TACIA(r, p[i], p[(i + 1) % n], R);
}
return fabs(ret);
} double ComputePolygonArea(int n)
{
double sum=0;
for(int i=1;i<=n-1;i++)
sum+=(p[i]^p[i-1]);
sum+=(p[0]^p[n-1]);
return fabs(sum/2);
} int main()
{
int n,m;
scanf("%d",&n);///多边形n个顶点
for(int i = 0 ; i < n ; ++i )///顶点坐标
p[i].input();
double polyArea = ComputePolygonArea(n);///计算多边形面积
scanf("%d",&m);
while(m--)
{ Point circle;
circle.input(); ///圆心坐标
int pp,qq;
scanf("%d%d",&pp,&qq);
double area = (1.0-(double)pp/qq)*polyArea; ///二分圆的半径
// printf("%f\n",area);
double l =0, r=1e18;
///固定二分次数
for(int i=1;i<300;i++){
double mid = (l+r)/2.0;
double insection = SPICA(n,circle,mid); ///圆与多边形交的面积
if(insection>area){
r = mid-eps;
}else{
l = mid;
}
}
printf("%.10lf\n",r);
}
return 0;
}

  

牛客网暑期ACM多校训练营(第三场) J Distance to Work 计算几何求圆与多边形相交面积模板的更多相关文章

  1. 牛客网暑期ACM多校训练营(第二场)J farm (二维树状数组)

    题目链接: https://www.nowcoder.com/acm/contest/140/J 思路: 都写在代码注释里了,非常好懂.. for_each函数可以去看一下,遍历起vector数组比较 ...

  2. 牛客网 暑期ACM多校训练营(第二场)A.run-动态规划 or 递推?

    牛客网暑期ACM多校训练营(第二场) 水博客. A.run 题意就是一个人一秒可以走1步或者跑K步,不能连续跑2秒,他从0开始移动,移动到[L,R]的某一点就可以结束.问一共有多少种移动的方式. 个人 ...

  3. 牛客网 暑期ACM多校训练营(第一场)A.Monotonic Matrix-矩阵转化为格子路径的非降路径计数,Lindström-Gessel-Viennot引理-组合数学

    牛客网暑期ACM多校训练营(第一场) A.Monotonic Matrix 这个题就是给你一个n*m的矩阵,往里面填{0,1,2}这三种数,要求是Ai,j⩽Ai+1,j,Ai,j⩽Ai,j+1 ,问你 ...

  4. 2018牛客网暑期ACM多校训练营(第二场)I- car ( 思维)

    2018牛客网暑期ACM多校训练营(第二场)I- car 链接:https://ac.nowcoder.com/acm/contest/140/I来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 ...

  5. 牛客网暑期ACM多校训练营(第一场) - J Different Integers(线段数组or莫队)

    链接:https://www.nowcoder.com/acm/contest/139/J来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语言1048 ...

  6. 牛客网暑期ACM多校训练营(第九场) A题 FWT

    链接:https://www.nowcoder.com/acm/contest/147/A来源:牛客网 Niuniu has recently learned how to use Gaussian ...

  7. 牛客网暑期ACM多校训练营(第九场)D

    链接:https://www.nowcoder.com/acm/contest/147/D来源:牛客网 Niuniu likes traveling. Now he will travel on a ...

  8. 牛客网暑期ACM多校训练营(第二场)B discount

    链接:https://www.nowcoder.com/acm/contest/140/B来源:牛客网 题目描述 White Rabbit wants to buy some drinks from ...

  9. 2018牛客网暑期ACM多校训练营(第一场)D图同构,J

    链接:https://www.nowcoder.com/acm/contest/139/D来源:牛客网 同构图:假设G=(V,E)和G1=(V1,E1)是两个图,如果存在一个双射m:V→V1,使得对所 ...

随机推荐

  1. Js 基础知识1

    JS比较运算符,有两种比较运算符: 第一种是==比较,它会自动转换数据类型再比较 第二种是===比较,它不会自动转换数据类型,如果数据类型不一致,返回false,如果一致,再比较. 不要使用==比较, ...

  2. 我与微笑哥以及 Java 极客技术的前世今生

    ​关注公众号,大家可以在公众号后台回复“博客园”,免费获得作者 Java 知识体系/面试必看资料. Hello,大家好,我是子悠,Java 极客技术团队的作者之一,本周是六月的第三周,将由我给大家编辑 ...

  3. Redhat 离线安装 Docker (Community from binaries)

    需求 在离线环境安装Docker (Community版),因为Enterprise版要花钱.当然资金充裕的客户可参考https://docs.docker.com/install/linux/doc ...

  4. 【数据结构学习】关于HashMap的那些事儿

    涉及数据结构 红黑树 链表 哈希 从CRUD说起 预热知识: DEFAULT_INITIAL_CAPACITY = 1 << 4, HashMap默认容量为16(n << m意 ...

  5. net core Webapi基础工程搭建(三)——在线接口文档Swagger

    目录 前言 Swagger NuGet引用第三方类库 别急,还有 没错,注释 小结 前言 前后分离的好处,就是后端埋头做业务逻辑功能,不需要过多考虑用户体验,只专注于数据.性能开发,对于前端需要的数据 ...

  6. Java 实现MD5加密

    说到MD5,那我们首先要知道什么是MD5,开始吧 MD5的典型应用是对一段信息(Message)产生信息摘要(Message-Digest),以防止被篡改.比如,在UNIX下有很多软件在下载的时候都有 ...

  7. c语言和c++的交换函数

    #include<iostream> using namespace std; namespace LiuGang{//在命名空间中写函数 void swap(int&aa,int ...

  8. Spring中的循环依赖解决详解

    前言 说起Spring中循环依赖的解决办法,相信很多园友们都或多或少的知道一些,但当真的要详细说明的时候,可能又没法一下将它讲清楚.本文就试着尽自己所能,对此做出一个较详细的解读.另,需注意一点,下文 ...

  9. 常见rpm包和yum包命令

    1.rpm包 在 安装.升级.卸载服务程序时要考虑到其他程序.库的依赖关系,在进行校验.安装. 卸载.查询.升级等管理软件操作时难度都非常大. RPM 机制则为解决这些问题而设计的.RPM 有点像 W ...

  10. Istio 太复杂?KubeSphere基于Ingress-Nginx实现灰度发布

    在 Bookinfo 微服务的灰度发布示例 中,KubeSphere 基于 Istio 对 Bookinfo 微服务示例应用实现了灰度发布.有用户表示自己的项目还没有上 Istio,要如何实现灰度发布 ...