Java生鲜电商平台-SpringCloud微服务开发中的数据架构设计实战精讲

Java生鲜电商平台:   微服务是当前非常流行的技术框架,通过服务的小型化、原子化以及分布式架构的弹性伸缩和高可用性,可以实现业务之间的松耦合、业务的灵活调整组合以及系统的高可用性。为业务创新和业务持续提供了一个良好的基础平台。本文包括下面若干内容。

1.微服务技术框架中的多层数据架构设计

2.数据架构设计中的要点

3.要点1:数据易用性

4.要点2:主、副数据及数据解耦

5.要点3:分库分表

6.要点4:多源数据适配

7.要点5:多源数据缓存

8.要点6:数据集市

为了容易理解,本文用一个简化的销售模型来阐述,如下图。图1显示了客户、卖家、商品、定价、订单的关系(这里省略支付、物流等其他元素)。

 
 

图1 销售模型

在这个销售模型中,卖家提供商品、制定价格,客户选择产品购买、形成销售订单。根据微服务的理念设计,可以划分为客户服务、卖家服务、商品服务、定价服务、订单服务,以及公共服务(比如认证、权限、通知等),如图2所示。

 
 

图2 微服务功能

微服务架构中的多层数据架构设计

分布式架构一般把系统分为 Saas(Software-as-a-Service)、Paas(Platform-as-a-Service)、Iaas(Infrastructure as a Service )三层。其中 Saas 层负责对外部提供业务服务,Paas 层提供基础应用平台,Iaas 层提供基础设施。微服务垂直嵌入这三层服务之中,相互独立。因此数据架构设计时需要考虑三层服务对数据的关注点,又要考虑微服务的独立性。

数据架构的分层设计

 
 

图3 微服务技术框架

如图3所示,Iaas 层提供程序运行的物理基础环境(这边涉及很多硬件·网络内容,在本文中省略)。Pass 层细分为三层,基础服务层,主要负责数据存储处理;事务框架层,主要负责微服务的注册·调度管理、分布式事务处理;应用服务层、主要实现各个微服务的 API,供其它微服务直接调用以及 Saas 层的服务调用。

Saas 服务就是公开对外提供的业务服务.

数据架构自下向上相应的分为 Raw Data 层、Logic Data(inner)层和 Logic Data(outer)层(Iaas 中主要以基础硬件环境为主,在本文中省略)。

Raw Data 层是基于数据库、文件或者其他形式数据内容。Logic Data(inner)层是微服务 API 使用的逻辑数据,比如客户数据、订单数据等等。

Logic Data(outer)层是对外服务提供数据,比如客户订单数据。因此,我们的数据架构的分层结果如图4所示。

 
 

图4 数据分层架构

除此之外,很多情报会以画面或报表的形式展现出来。因此在 Logic Data(outer) 之上,可以构建 Information Block(常用的信息块)、通过 View type(显示模式)的设定后,最终 View 展现出来。

如图4所示,越靠近对外服务层,客户对设计者的影响度越大,越需要从使用性、易用性、适用性等考虑。反之,越远离对外服务层,设计上更关心数据的存储。

数据三层架构的好处是实现数据从系统实现到业务实现的逐层过渡,实现业务数据和系统数据间的松耦合。同时实现业务的灵活扩展和系统的灵活扩展

数据架构设计中的要点

上面讲述了数据架构的分层设计,下面讲述数据架构设计中的要点。

要点1:数据易用性

数据无论用什么方式实现,其最终目的都是为业务(或者是客户)使用的。因此,在对外提供服务的时候,数据的易用性非常关键。

 
 

图5 数据易用性

如图5所示,客户信息在 Logic Data(inner) 层中为了数据的柔软性和非冗余,把人员信息拆成若干子表来存储。比如,人员地址表可以无限多的存储客户地址信息。这样的好处在于每次人员地址更新时,不用直接更新人员地址,而是生成一个新的地址数据,原有的地址信息作为历史数据得到保存,易于数据快速恢复和历史信息追踪。

但在 Logic Data(outer)层提供外部数据的时候,首先考虑的是一次性能提供足够用的信息(毕竟查询的操作大大高于修改的操作),减少业务场景中不需要的信息。比如对一般客户只提供三个常用地址的时候,数据设计中地址1、地址2和地址3放在一张表中。

要点2:主、副数据及数据解耦

每个微服务 API 的数据完全独立是不太现实的,比如订单中需要有商品、客户(包括收货者)、卖家以及价格等数据。如果这些数据都在订单服务 API 中管理,那么客户情报的变更、价格调整等信息都要同步给订单 API 中数据,数据的耦合度就会变得非常高。

在数据设计的时候,需要考虑降低数据间的相互依赖性。因此,首先需要确定每个微服务 API 的主数据和副数据。主数据指微服务 API 的核心数据,这种数据的增删改主要集中在某个微服务 API 中,比如订单服务 API 中的订单数据。副数据指参照或者映射其他微服务 API 的数据,比如订单服务 API 中的商品数据、价格数据等。

其次,为了降低数据之间的耦合度,用数据关联表来表征数据间的关系。如果想去掉数据间的关联关系,直接去掉关联表即可,对数据本身的没有任何影响。具体如图6所示。

 

图6 主、副数据及数据解耦

要点3:分库分表

随着业务数据量不断增加,单一数据库或单一数据表中会积累大量的数据,比如订单数据,随着时间推移和客户数量的增加,产生的订单数据也会越来越多。当数据累积到一定程度后,数据操作的性能会大幅下降,也就是我们常说的数据库“带不动了”。所以,在数据架构设计阶段就应该考虑数据的分库分表。

如图7所示,分库,即我们把订单数据分为当前数据应用库、历史数据库、历史归档数据库。当前数据应用库用来支持新订单的生成以及执行中订单的增删改查。历史数据库(这里举例分为最近3个月和最近1年)当客户想看过往订单的时候才使用。历史归档数据(按年间归档)原则上不直接对客户公开,用于备查、统计分析。

对于当前数据应用库,可以继续再分库,按客户号范围来分库。这样每个数据库的大小都能得到有效控制。分表,即把一条信息分别存储在两张或多张表中。比如把订单信息按基本信息和详细信息分表,就可以适用于订单的基本信息查询和订单详细信息查询。总之,分库分表的核心就是控制单一数据库的负荷(数据量和数据信息量),通过多表多库来应对业务数据量的增长。

 
 

图7 分表分库

要点4:多源数据适配

传统的关系型数据库之外,有多种多样的数据源,比如图像、声音、视频等多媒体数据文件或数据流,CSV、TXT、Doc、Excle、PDF、XML 等各种异构数。这些数据都需要做相应的处理,转换成可管理的数据信息。因此在数据架构设计的时候,需要给不同性质的数据源配置相对应的读写适配器,同时也需要有统一调度的地方,如图8所示。

 
 

图8 多源数据适配

要点5:多源数据缓存

数据处理的性能除了处理逻辑的复杂度以外,还有很大一部分是目标数据的操作时长(含对硬件磁盘设备的读写以及网络的传输)。网络速度特别是光纤的使用后已经大幅度提高,但机器磁盘的读写效率并没有显著提高,因此减少磁盘读写是提高效率的一个重要途径。

数据缓存就是把常用的数据(不会经常更改的数据)、最近使用数据放到内存中。这样就可以大幅降低系统对硬件磁盘设备的操作开销,提高整个数据系统的性能,如图9所示。

 
 

图9 数据缓存

要点6:数据集市

数据集市是一个很大的话题。当现有的数据不能简单地通过几个表数据关联以及简单加工后就可以供业务使用的时候,就需要考虑构建数据集市。数据集市以数据运用的观点来分析加工数据,通过多源数据的导入、清洗、加工、视图做成等一系列的数据操作后,为业务提供可用的、稳定的数据源。

例如,对销售分析中、什么样的客户喜欢什么样的商品、价格对销售金额的影响、销售金额跟地区日期的关联关系等多维度分析,就要用数据集市的概念,如图10所示。

 

图10 数据集市

数据承载着信息,好的数据架构设计会使业务系统变得更加流畅、更加容易理解和维护。本文只是总结一些在实际工程中的体会,供大家分享。如果有不足之处、也请大家补充、赐教。

如果有不太懂的地方,请加QQ群:793305035

Java生鲜电商平台-SpringCloud微服务开发中的数据架构设计实战精讲的更多相关文章

  1. Java生鲜电商平台-SpringCloud微服务架构中分布式事务解决方案

    Java生鲜电商平台-SpringCloud微服务架构中分布式事务解决方案 说明:Java生鲜电商平台中由于采用了微服务架构进行业务的处理,买家,卖家,配送,销售,供应商等进行服务化,但是不可避免存在 ...

  2. Java生鲜电商平台-SpringCloud微服务架构高并发参数优化实战

    Java生鲜电商平台-SpringCloud微服务架构高并发参数优化实战 一.写在前面 在Java生鲜电商平台平台中相信不少朋友都在自己公司使用Spring Cloud框架来构建微服务架构,毕竟现在这 ...

  3. Java生鲜电商平台-SpringCloud微服务架构中核心要点和实现原理

    Java生鲜电商平台-SpringCloud微服务架构中核心要点和实现原理 说明:Java生鲜电商平台中,我们将进一步理解微服务架构的核心要点和实现原理,为读者的实践提供微服务的设计模式,以期让微服务 ...

  4. Java生鲜电商平台-SpringCloud微服务架构中网络请求性能优化与源码解析

    Java生鲜电商平台-SpringCloud微服务架构中网络请求性能优化与源码解析 说明:Java生鲜电商平台中,由于服务进行了拆分,很多的业务服务导致了请求的网络延迟与性能消耗,对应的这些问题,我们 ...

  5. Java生鲜电商平台-SpringCloud分布式请求跟踪系统设计与实践

    Java生鲜电商平台-SpringCloud分布式请求跟踪系统设计与实践 Java生鲜电商平台微服务现状 某个服务挂了,导致上游大量报警,如何快速定位哪个服务出问题? 某个核心挂了,导致大量报错,如何 ...

  6. Java生鲜电商平台-订单中心服务架构与异常订单逻辑

    Java生鲜电商平台-订单中心服务架构与异常订单逻辑 订单架构实战中阐述了订单系统的重要性,并从订单系统的信息架构和流程上对订单系统有了总体认知,同时还穿插着一些常见的订单业务规则和逻辑.上文写到订单 ...

  7. Java生鲜电商平台-商家支付系统与对账系统架构实战

    Java生鲜电商平台-商家支付系统与对账系统架构实战 说明:关于生鲜电商平台,支付系统是连接消费者.商家(或平台)和金融机构的桥梁,管理支付数据,调用第三方支付平台接口,记录支付信息(对应订单号,支付 ...

  8. Java生鲜电商平台-优惠券功能设计与开发(小程序/APP)

    Java生鲜电商平台-优惠券功能设计与开发(小程序/APP) 说明:Java生鲜电商平台-优惠券功能设计与开发(小程序/APP) 目录 1.项目背景与需求分析 2.需求目的与功能点列表 3.业务逻辑 ...

  9. Java生鲜电商平台-redis缓存在商品中的设计与架构

    Java生鲜电商平台-redis缓存在商品中的设计与架构 说明:Java开源生鲜电商平台-redis缓存在商品中的设计与架构. 1. 各种计数,商品维度计数和用户维度计数 说起电商,肯定离不开商品,而 ...

随机推荐

  1. c#中的Nullable(可空类型)

    在C#中使用Nullable类型(给整型赋null值的方法) 在C#1.x的版本中,一个值类型变量是不可以被赋予null值的,否则会产生异常.在C#2.0中,微软提供了Nullable类型,允许用它定 ...

  2. Java每日一面(Part1:计算机网络)[19/10/21]

    作者:故事我忘了¢个人微信公众号:程序猿的月光宝盒 1.UDP简介 1.1UDP报文结构: ​ Source Port:源端口 Destination Port:目标端口 Length:数据包长度 C ...

  3. 通过C#代码调用Dynamics 365 Web API执行批量操作

    我是微软Dynamics 365 & Power Platform方面的工程师罗勇,也是2015年7月到2018年6月连续三年Dynamics CRM/Business Solutions方面 ...

  4. 解决Mac下java多版本共存问题

    一.系统环境 macOS High Sierra(版本:10.13.6) MacBook Air (13-inch, Early 2015) 二.解决步骤 1. 新建.bash_profile文件 $ ...

  5. Django模版中加载静态文件配置详解

    .settings.INSTALLED_APPS下添加:django.contrib.staticfiles .settings.py下添加:STATIC_URL = '/static/' . ()在 ...

  6. 以特定用户和组来执行某个程序 - linux

    运行cockpit 服务时,我们指定运行此程序的用户和组:cockpit-ws cockpit-ws 我们使用 sudo -u -g 命令来进行运行: sudo -u cockpit-ws -g co ...

  7. Linux-3.14.12内存管理笔记【构建内存管理框架(2)】

    前面构建内存管理框架,已经将内存管理node节点设置完毕,接下来将是管理区和页面管理的构建.此处代码实现主要在于setup_arch()下的一处钩子:x86_init.paging.pagetable ...

  8. Scrapy 下载图片时 ModuleNotFoundError: No module named'PIL'

    使用scrapy的下载模块需要PIL(python图像处理模块)的支持,使用pip安装即可

  9. 有static的方法和没有static的调用

    package com.yh.test02; public class Test { public static void main(String[] args) { Test.method1(); ...

  10. vue中简单的数据请求 fetch axios

    fetch 不需要额外的安装什么东西,直接就可以使用 fetch(url, { method:'post', headers: { 'Content-Type': 'application/x-www ...