在tf1.0中,对卷积层重新进行了封装,比原来版本的卷积层有了很大的简化。

一、旧版本(1.0以下)的卷积函数:tf.nn.conv2d

conv2d(
input,
filter,
strides,
padding,
use_cudnn_on_gpu=None,
data_format=None,
name=None
)

该函数定义在tensorflow/python/ops/gen_nn_ops.py

参数:

    • input: 一个4维Tensor(N,H,W,C). 类型必须是以下几种类型之一: half, float32, float64.
    • filter: 卷积核. 类型和input必须相同,4维tensor, [filter_height, filter_width, in_channels, out_channels],如[5,5,3,32]
    • strides:  在input上切片采样时,每个方向上的滑窗步长,必须和format指定的维度同阶,如[1, 2, 2, 1]
    • padding: 指定边缘填充类型: "SAME", "VALID". SAME表示卷积后图片保持不变,VALID则会缩小。
    • use_cudnn_on_gpu: 可选项,bool型。表示是否在GPU上用cudnn进行加速,默认为True.
    • data_format: 可选项,指定输入数据的格式: "NHWC"或 "NCHW", 默认为"NHWC"
      NHWC格式指[batch, in_height, in_width, in_channels]
      NCHW格式指[batch, in_channels, in_height, in_width]
    • name: 操作名,可选.
示例:
conv1=tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 

二、1.0版本中的卷积函数:tf.layers.conv2d

conv2d(
inputs,
filters,
kernel_size,
strides=(1, 1),
padding='valid',
data_format='channels_last',
dilation_rate=(1, 1),
activation=None,
use_bias=True,
kernel_initializer=None,
bias_initializer=tf.zeros_initializer(),
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
trainable=True,
name=None,
reuse=None
)

定义在tensorflow/python/layers/convolutional.py.

参数多了很多,但实际用起来,却更简单。

  • inputs: 输入数据,4维tensor.
  • filters: 卷积核个数。
  • kernel_size:卷积核大小,如【5,5】。如果长宽相等,也可以直接设置为一个数,如kernel_size=5
  • strides: 卷积过程中的滑动步长,默认为[1,1]. 也可以直接设置为一个数,如strides=2
  • padding: 边缘填充,'same' 和'valid‘选其一。默认为valid
  • data_format: 输入数据格式,默认为channels_last ,即 (batch, height, width, channels),也可以设置为channels_first 对应 (batch, channels, height, width).

  • dilation_rate: 微步长卷积,这个比较复杂一些,请百度.

  • activation: 激活函数.
  • use_bias: Boolean型,是否使用偏置项.
  • kernel_initializer: 卷积核的初始化器.
  • bias_initializer: 偏置项的初始化器,默认初始化为0.
  • kernel_regularizer: 卷积核化的正则化,可选.
  • bias_regularizer: 偏置项的正则化,可选.
  • activity_regularizer: 输出的正则化函数.
  • trainable: Boolean型,表明该层的参数是否参与训练。如果为真则变量加入到图集合中 GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
  • name: 层的名字.
  • reuse: Boolean型, 是否重复使用参数.
示例:

conv1=tf.layers.conv2d(
inputs=x,
filters=32,
kernel_size=5,
padding="same",
activation=tf.nn.relu,
kernel_initializer=tf.TruncatedNormal(stddev=0.01))

更复杂一点的:

conv1 = tf.layers.conv2d(batch_images,
filters=64,
kernel_size=7,
strides=2,
activation=tf.nn.relu,
kernel_initializer=tf.TruncatedNormal(stddev=0.01)
bias_initializer=tf.Constant(0.1),
kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003),
bias_regularizer=tf.contrib.layers.l2_regularizer(0.003),
name='conv1')
												

tensorflow 1.0 学习:卷积层的更多相关文章

  1. 使用TensorFlow v2.0构建卷积神经网络

    使用TensorFlow v2.0构建卷积神经网络. 这个例子使用低级方法来更好地理解构建卷积神经网络和训练过程背后的所有机制. CNN 概述 MNIST 数据集概述 此示例使用手写数字的MNIST数 ...

  2. tensorflow 1.0 学习:池化层(pooling)和全连接层(dense)

    池化层定义在 tensorflow/python/layers/pooling.py. 有最大值池化和均值池化. 1.tf.layers.max_pooling2d max_pooling2d( in ...

  3. tensorflow 1.0 学习:参数和特征的提取

    在tf中,参与训练的参数可用 tf.trainable_variables()提取出来,如: #取出所有参与训练的参数 params=tf.trainable_variables() print(&q ...

  4. tensorflow 1.0 学习:参数初始化(initializer)

    CNN中最重要的就是参数了,包括W,b. 我们训练CNN的最终目的就是得到最好的参数,使得目标函数取得最小值.参数的初始化也同样重要,因此微调受到很多人的重视,那么tf提供了哪些初始化参数的方法呢,我 ...

  5. tensorflow 1.0 学习:用CNN进行图像分类

    tensorflow升级到1.0之后,增加了一些高级模块: 如tf.layers, tf.metrics, 和tf.losses,使得代码稍微有些简化. 任务:花卉分类 版本:tensorflow 1 ...

  6. TensorFlow与caffe中卷积层feature map大小计算

    刚刚接触Tensorflow,由于是做图像处理,因此接触比较多的还是卷及神经网络,其中会涉及到在经过卷积层或者pooling层之后,图像Feature map的大小计算,之前一直以为是与caffe相同 ...

  7. 【深度学习与TensorFlow 2.0】卷积神经网络(CNN)

    注:在很长一段时间,MNIST数据集都是机器学习界很多分类算法的benchmark.初学深度学习,在这个数据集上训练一个有效的卷积神经网络就相当于学习编程的时候打印出一行“Hello World!”. ...

  8. tensorflow 2.0 学习(四)

    这次的mnist学习加入了测试集,看看学习的准确率,代码如下 # encoding: utf-8 import tensorflow as tf import matplotlib.pyplot as ...

  9. tensorflow 1.0 学习:十图详解tensorflow数据读取机制

    本文转自:https://zhuanlan.zhihu.com/p/27238630 在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找 ...

随机推荐

  1. 《修炼之道:.NET开发要点精讲》读书笔记(四)

    委托的作用:1)它允许把方法作为参数,传递给其它的模块:2)它允许我们同时调用多个具有相同签名的方法:3)它允许我们异步调用任何方法. “方法签名”指方法的参数个数.参数类型以及返回值等,具有相同签名 ...

  2. 老赵点滴地址:http://blog.zhaojie.me/2009/05/a-simple-actor-model-implementation.html

    老赵点滴地址:http://blog.zhaojie.me/2009/05/a-simple-actor-model-implementation.html

  3. MVC Razor视图下ViewData传递html内容被转义

    页面输出: html源码: <div style="width: 90%; height: auto;"> <p>付凯航 阿豆 ADOU</p> ...

  4. c#串口测试

    软件和代码网盘下载 https://pan.baidu.com/s/1dFrE1pv#list/path=%2F SerialPort 类 https://msdn.microsoft.com/zh- ...

  5. tensorflow学习之(十)使用卷积神经网络(CNN)分类手写数字0-9

    #卷积神经网络cnn import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #数据包,如 ...

  6. 【翻译】Flume 1.8.0 User Guide(用户指南) source

    翻译自官网flume1.8用户指南,原文地址:Flume 1.8.0 User Guide 篇幅限制,分为以下5篇: [翻译]Flume 1.8.0 User Guide(用户指南) [翻译]Flum ...

  7. C#项目学习记录

    1,   Visual Studio Code 添加VS 2017的开发人员命令提示符---C#编译环境 2,  C#编译器和CLI的安装 注意:自己的电脑上配置环境变量时,配置在系统变量的Path中 ...

  8. maple推导剑桥模型塑性势函数

    with(DEtools); Parameter(M); de := diff(q(p), p)+(M^*p^-q(p)^)/(*p*q(p)) = ; dsolve({de, q(px) = }, ...

  9. POI导入和导出Excel总结

    POI导入和导出Excel总结   POI使用总结 1.POI读取Excel 打开工作簿的方式有以下两种简单的应用,POI读取和输出工作簿文件都可以通过以下两种方式来声明: //通过输入流的方式打开本 ...

  10. C语言 指针基础篇 数组,函数与指针的运用 2 14

    下面看看如何在函数中运用指针吧 下面是往函数传入指针的简单操作,不是传入数组的.判断一个a是否大于b是的话给,是的话对其进行操作,不是的话就直接返回. #include <stdio.h> ...