描述

The Archeologists of the Current Millenium (ACM) now and then discover ancient artifacts located at vertices of regular polygons. The moving sand dunes of the desert render the excavations difficult and thus once three vertices of a polygon are discovered there is a need to cover the entire polygon with protective fabric.

输入

Input contains multiple cases. Each case describes one polygon. It starts with an integer n <= 50, the number of vertices in the polygon, followed by three pairs of real numbers giving the x and y coordinates of three vertices of the polygon. The numbers are separated by whitespace. The input ends with a n equal 0, this case should not be processed.

输出

For each line of input, output one line in the format shown below, giving the smallest area of a rectangle which can cover all the vertices of the polygon and whose sides are parallel to the x and y axes.

样例输入

4
10.00000 0.00000
0.00000 -10.00000
-10.00000 0.00000
6
22.23086 0.42320
-4.87328 11.92822
1.76914 27.57680
23
156.71567 -13.63236
139.03195 -22.04236
137.96925 -11.70517
0

样例输出

Polygon 1: 400.000
Polygon 2: 1056.172
Polygon 3: 397.673

题意

已知正n边形三点求最小矩形覆盖面积

题解

正n边形上三点,求出正n边形上唯一外接圆

顺时针绕圆心旋转圆心角得到每个顶点的坐标

然后答案就是(最大的x-最小的x)*(最大的y-最小的y)

代码

 #include<bits/stdc++.h>
using namespace std; struct Point
{
double x,y;
Point(double x=,double y=):x(x),y(y){}
};
Point tcircle(Point pt1,Point pt2,Point pt3,double &radius)
{
double x1=pt1.x,x2=pt2.x,x3=pt3.x;
double y1=pt1.y,y2 =pt2.y,y3=pt3.y;
double a=x1-x2,b=y1-y2,c=x1-x3,d=y1-y3;
double e=((x1*x1-x2*x2)+(y1*y1-y2*y2))/2.0;
double f=((x1*x1-x3*x3)+(y1*y1-y3*y3))/2.0;
double det=b*c-a*d;
double x0=(b*f-d*e)/det;
double y0=(c*e-a*f)/det;
radius=hypot(x1-x0,y1-y0);
return Point(x0,y0);
}
Point rotateShun(Point p,Point dx,double selt)
{
double xx=(p.x-dx.x)*cos(-selt)-(p.y-dx.y)*sin(-selt)+dx.x;
double yy=(p.x-dx.x)*sin(-selt)+(p.y-dx.y)*cos(-selt)+dx.y;
return Point(xx,yy);
}
Point p[];
int main()
{
int n,ca=;
double PI=acos(-);
while(scanf("%d",&n),n)
{
for(int i=;i<=;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
double r=.;
Point cir=tcircle(p[],p[],p[],r);
double selt=.*PI/n;
double maxx=p[].x,minx=p[].x,maxy=p[].y,miny=p[].y;
for(int i=;i<=n;i++)
{
p[i]=rotateShun(p[i-],cir,selt);
maxx=max(maxx,p[i].x);
minx=min(minx,p[i].x);
maxy=max(maxy,p[i].y);
miny=min(miny,p[i].y);
}
double ans=(maxx-minx)*(maxy-miny);
printf("Polygon %d: %.3f\n",ca++,ans);
}
return ;
}

TZOJ 2392 Bounding box(正n边形三点求最小矩形覆盖面积)的更多相关文章

  1. 论文阅读笔记四十七:Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression(CVPR2019)

    论文原址:https://arxiv.org/pdf/1902.09630.pdf github:https://github.com/generalized-iou 摘要 在目标检测的评测体系中,I ...

  2. 3D空间中的AABB(轴向平行包围盒, Aixe align bounding box)的求法

    引言 在前面的一篇文章中讲述了怎样通过模型的顶点来求的模型的包围球,而且还讲述了基本包围体除了包围球之外,还有AABB包围盒.在这一章,将讲述怎样依据模型的坐标求得它的AABB盒. 表示方法 AABB ...

  3. Latex 中插入图片no bounding box 解决方案

    在windows下,用latex插入格式为jpg,png等图片会出现no bounding box 的编译错误,此时有两个解决办法: 1.将图片转换为eps格式的图片 \usepackage{grap ...

  4. bounding box的简单理解

    1. 小吐槽 OverFeat是我看的第一篇深度学习目标检测paper,因为它是第一次用深度学习来做定位.目标检测问题.可是,很难懂...那个bounding box写得也太简单了吧.虽然,很努力地想 ...

  5. 第二十六节,滑动窗口和 Bounding Box 预测

    上节,我们学习了如何通过卷积网络实现滑动窗口对象检测算法,但效率很低.这节我们讲讲如何在卷积层上应用这个算法. 为了构建滑动窗口的卷积应用,首先要知道如何把神经网络的全连接层转化成卷积层.我们先讲解这 ...

  6. maya cmds pymel polyEvaluate 获取 bounding box

    maya cmds pymel polyEvaluate 获取 bounding box cmds.polyEvaluate(bc = 1)   #模型 cmds.polyEvaluate(bc2 = ...

  7. Torch 两个矩形框重叠面积的计算 (IoU between tow bounding box)

    Torch 两个矩形框重叠面积的计算 (IoU between tow bounding box) function DecideOberlap(BBox_x1, BBox_y1, BBox_x2, ...

  8. elasticsearch Geo Bounding Box Query

    Geo Bounding Box Query 一种查询,允许根据一个点位置过滤命中,使用一个边界框.假设以下索引文档: PUT /my_locations { "mappings" ...

  9. 两个Bounding Box的IOU计算代码

    Bounding Box的数据结构为(xmin,ymin,xmax,ymax) 输入:box1,box2 输出:IOU值 import numpy as np def iou(box1,box2): ...

随机推荐

  1. Sql更新

    //要传一个DataSet,和若干个表 /// <summary> /// 更新数据库 /// </summary> /// <param name="data ...

  2. Oracle数据库ORA-01109 数据库未打开

    引致 https://blog.csdn.net/colinmok/article/details/39504879?locationNum=11&fps=1  感谢! 在plsql创建了2表 ...

  3. Windows和MacOS的比较——不断完善和补充,欢迎吐槽

    1. 鼠标滚轮的方向不一样,Windows上滚轮朝下,页面滚动条也会朝下.而Mac上则相反. 2. Windows上有Home和End键,经常可以Ctrl+Home,Ctrl+End,Ctrl+Shi ...

  4. petapoco模板修改

    [Reference(ReferenceType.Many, ColumnName = "OneId", ReferenceMemberName = "OneId&quo ...

  5. 乘法DAC一点知识

    在应用电路中发现乘法DAC,以前没有用过所谓的乘法DAC.查过资料发现,其实所有的DAC都可以看作是个“乘法器”-------将输入数字量与基准电压相乘. 一般DAC的输出是VOUT=VREF*D/M ...

  6. JavaWeb——关于RequestDispatcher的原理

    RequestDispatcher简介 RequestDispatcher 代表请求的派发者.它有2个动作:forward 和 include .客户端对于任何一个请求,可以根据业务逻辑需要,选择不同 ...

  7. 基础总结(02)--BFC(块级格式化上下文)

    BFC(块级格式化上下文)布局规则 1.元素垂直排列. 2.同一个BFC相邻两个元素的margin会重叠. 3.BFC区域不会与浮动元素重叠. 4.BFC就是页面上的一个隔离的独立容器,容器里面的子元 ...

  8. Python数据类型的内置函数之str(字符串)

    Python数据类型内置函数 - str(字符串) - list(列表) - tuple(元组) - dict(字典) - set(收集) str(字符串)的一些操作 - 字符串相连方法 # 字符串的 ...

  9. leetCode66:加一

    /** * @param {number[]} digits * @return {number[]} */ var plusOne = function(digits) { if(digits[di ...

  10. JAVA 数组遍历

    一.遍历List 1.增强for循环 String[] arr = new String[] {"xx","yy","zz"}; for(S ...