51Nod1634 刚体图 动态规划 容斥原理 排列组合
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1634.html
题目传送门 - 51Nod1634
题意
例如,对于 2 × 3 的格点图,一共有 448 种方案。
题解
考虑到加一条斜着的边的作用是让一个格子的行和列垂直。
我们需要让所有的行和列都互相垂直。于是,只要我们建一个二分图,行和列分居两侧,问题就被转化成了统计连通的二分图个数,其中,一条边有两种连接的方式。
令 $dp_{i,j}$ 表示左边有 $i$ 个,右边有 $j$ 个节点 的连通二分图个数,于是我们需要补集转化一下,得到:
$$dp_{n,m}=3^{nm}-\sum_{i=1}^{n}\sum_{j=0}^{m}[i\neq n\ {\rm OR}\ j\neq m] \binom{n-1}{i-1}\binom{m}{j}\cdot 3^{(n-i)(m-j)}dp_{i,j}$$
这里略微的解释一下意义。我们枚举第一个节点所在的连通块的左右部分点的个数,然后剩余的边可以随意连,所以有一个 $3^{(n-i)(m-j)}$ 。
代码
#include <bits/stdc++.h>
using namespace std;
const int N=15,mod=1e9+7;
int C[N][N],Pow3[N*N],dp[N][N];
int main(){
for (int i=0;i<N;i++)
C[i][0]=C[i][i]=1;
for (int i=1;i<N;i++)
for (int j=1;j<i;j++)
C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
Pow3[0]=1;
for (int i=1;i<N*N;i++)
Pow3[i]=3LL*Pow3[i-1]%mod;
memset(dp,0,sizeof dp);
dp[0][1]=dp[1][0]=1;
for (int n=1;n<N;n++)
for (int m=1;m<N;m++){
dp[n][m]=Pow3[n*m];
for (int i=1;i<=n;i++)
for (int j=0;j<=m;j++)
if (i!=n||j!=m)
dp[n][m]=(-1LL*C[n-1][i-1]*C[m][j]%mod
*Pow3[(n-i)*(m-j)]%mod*dp[i][j]%mod
+dp[n][m])%mod;
dp[n][m]=(dp[n][m]+mod)%mod;
}
int n,m;
while (~scanf("%d%d",&n,&m))
printf("%d\n",dp[n][m]);
return 0;
}
51Nod1634 刚体图 动态规划 容斥原理 排列组合的更多相关文章
- 【BZOJ 3505】 [Cqoi2014]数三角形 容斥原理+排列组合+GCD
我们先把所有三角形用排列组合算出来,再把一行一列上的三点共线减去,然后我们只观察向右上的三点共线,向左上的乘二即可,我们发现我们如果枚举所有的两边点再乘中间点的个数(GCD),那么我们发现所有的两边点 ...
- 排列组合或容斥原理 SPOJ - AMR11H
题目链接: https://vjudge.net/contest/237052#problem/H 这里给你一串数字,让你计算同时拥有这串数字最大值和最小值的子集(连续)和子序列(可以不连续)的数量, ...
- 【专题】计数问题(排列组合,容斥原理,Prufer序列)
[容斥原理] 对于统计指定排列方案数的问题,一个方案是空间中的一个元素. 定义集合x是满足排列中第x个数的限定条件的方案集合,设排列长度为S,则一共S个集合. 容斥原理的本质是考虑[集合交 或 集合交 ...
- 【CodeForces】914 H. Ember and Storm's Tree Game 动态规划+排列组合
[题目]H. Ember and Storm's Tree Game [题意]Zsnuoの博客 [算法]动态规划+排列组合 [题解]题目本身其实并不难,但是大量干扰因素让题目显得很神秘. 参考:Zsn ...
- 【CodeForces】889 C. Maximum Element 排列组合+动态规划
[题目]C. Maximum Element [题意]给定n和k,定义一个排列是好的当且仅当存在一个位置i,满足对于所有的j=[1,i-1]&&[i+1,i+k]有a[i]>a[ ...
- [Codeforces 1228E]Another Filling the Grid (排列组合+容斥原理)
[Codeforces 1228E]Another Filling the Grid (排列组合+容斥原理) 题面 一个\(n \times n\)的格子,每个格子里可以填\([1,k]\)内的整数. ...
- [Codeforces 997C]Sky Full of Stars(排列组合+容斥原理)
[Codeforces 997C]Sky Full of Stars(排列组合+容斥原理) 题面 用3种颜色对\(n×n\)的格子染色,问至少有一行或一列只有一种颜色的方案数.\((n≤10^6)\) ...
- HDU 4497 GCD and LCM(分解质因子+排列组合)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 题意:已知GCD(x, y, z) = G,LCM(x, y, z) = L.告诉你G.L,求满 ...
- 数组排列组合问题——BACKTRACKING
BACKTRACKING backtracking(回溯法)是一类递归算法,通常用于解决某类问题:要求找出答案空间中符合某种特定要求的答案,比如eight queens puzzle(将国际象棋的八个 ...
随机推荐
- 优秀员工的修炼——通往专家、管理之路
(一)好员工的素质 好员工的类型有很多种,尝试着抽象出一个定义吧--好员工是那些主管分配其任务放心.同事喜欢与其共事.对自己工作负责.志在自我提升和价值实现的人.知识经济时代,好员工首先是做好自我管理 ...
- django配置发送邮箱
该邮箱配置后台发送邮箱验证使用 settings内配置 # 服务器地址 EMAIL_HOST = 'smtp.163.com' # 端口,邮箱默认动态端口 25 EMAIL_PORT = 25 # 邮 ...
- Django 笔记(四)模板标签 ~ 自定义过滤器
模板标签: 标签在渲染的过程中提供任意的逻辑 语法: 由{% ... %} 和 {% end... %} 常用标签: with:类似取别名 模版继承: Django模版引擎中最强大也是最复杂的部分就是 ...
- PHP 转义
函数名 释义 介绍 htmlspecialchars 将与.单双引号.大于和小于号化成HTML格式 &转成&"转成"' 转成'<转成<>转成> ...
- ionic3 更新打开apk android 8.0报错
项目中安卓强制更新,当文件下载完.在android 8.0中不能打开apk包. 引入插件报一下错误 import { FileOpener } from '@ionic-native/file-ope ...
- android入门小结一
一 Android入门基础:从这里开始 gradle介绍: Android Studio使用Gradle 编译运行Android工程. 工程的每个模块以及整个工程都有一个build.gradle文件. ...
- 【python】mongo删除数据
参考:https://stackoverflow.com/questions/23334743/setting-justone-limiter-for-pymongo-remove-throws-ty ...
- laravel 视图
在实际开发中,除了 API 路由返回指定格式数据对象外,大部分 Web 路由返回的都是视图,以便实现更加复杂的页面交互,我们在前面已经看到过了视图的定义方式: return view('以.分隔的视图 ...
- 常见的排序算法(直接插入&选择排序&二分查找排序)
1.直接插入排序算法 源码: package com.DiYiZhang;/* 插入排序算法 * 如下进行的是插入,排序算法*/ public class InsertionSort { pub ...
- flower
问题 D: flower 时间限制: 1 Sec 内存限制: 128 MB 题目描述 又是一年教师节,有n个小朋友打算去看望花老师.去看花老师当然要买花咯,不过某些土(xue)豪(ba)买了太多的花 ...