Problem UVA1152-4 Values whose Sum is 0

Accept: 794  Submit: 10087
Time Limit: 9000 mSec

Problem Description

The SUM problem can be formulated as follows: given four lists A,B,C,D of integer values, compute how many quadruplet (a,b,c,d) ∈ A×B×C×D are such that a+b+c+d = 0. In the following, we assume that all lists have the same size n.

Input

The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 2^28) that belong respectively to A,B,C and D.

 Output

For each test case, your program has to write the number quadruplets whose sum is zero. The outputs of two consecutive cases will be separated by a blank line.

 Sample Input

1
6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45
 

 Sample Output

5

题解:这个题主要是太陈了,觉得是个大水题,但是第一次见的时候不是太容易想。思想很深刻,分块,明明都是暴力枚举,但即便不加二分查找这个方法也在数量级上碾压四重for循环,感觉上有一点不可思议,想想莫队算法是不是也利用了这个思想(分块真的可以出奇迹)。

 #include <bits/stdc++.h>

 using namespace std;

 const int maxn =  + ;

 int a[maxn], b[maxn], c[maxn], d[maxn];
int sum[maxn*maxn];
int n; int main()
{
//freopen("input.txt", "r", stdin);
int iCase;
scanf("%d", &iCase);
while (iCase--) {
scanf("%d", &n);
for (int i = ; i < n; i++) {
scanf("%d%d%d%d", &a[i], &b[i], &c[i], &d[i]);
} int cnt = ;
for (int i = ; i < n; i++) {
for (int j = ; j < n; j++) {
sum[cnt++] = a[i] + b[j];
}
}
sort(sum, sum + cnt);
long long ans = ;
for (int i = ; i < n; i++) {
for (int j = ; j < n; j++) {
ans += upper_bound(sum, sum + cnt, -c[i] - d[j]) - lower_bound(sum, sum + cnt, -c[i] - d[j]);
}
} printf("%lld\n", ans);
if (iCase) printf("\n");
}
return ;
}

UVA1152-4 Values whose Sum is 0(分块)的更多相关文章

  1. UVA-1152 4 Values whose Sum is 0 (二分)

    题目大意:在4个都有n个元素的集合中,每个集合选出一个元素,使得4个数和为0.问有几种方案. 题目分析:二分.任选两组求和,剩下两组求和,枚举第一组中每一个和sum,在第二组和中查找-sum的个数,累 ...

  2. uva1152 - 4 Values whose Sum is 0(枚举,中途相遇法)

    用中途相遇法的思想来解题.分别枚举两边,和直接暴力枚举四个数组比可以降低时间复杂度. 这里用到一个很实用的技巧: 求长度为n的有序数组a中的数k的个数num? num=upper_bound(a,a+ ...

  3. UVA 1152 4 Values whose Sum is 0 (枚举+中途相遇法)(+Java版)(Java手撕快排+二分)

    4 Values whose Sum is 0 题目链接:https://cn.vjudge.net/problem/UVA-1152 ——每天在线,欢迎留言谈论. 题目大意: 给定4个n(1< ...

  4. POJ 2785 4 Values whose Sum is 0(想法题)

    传送门 4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 20334   A ...

  5. POJ 2785 4 Values whose Sum is 0

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 13069   Accep ...

  6. 哈希-4 Values whose Sum is 0 分类: POJ 哈希 2015-08-07 09:51 3人阅读 评论(0) 收藏

    4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 17875 Accepted: ...

  7. [poj2785]4 Values whose Sum is 0(hash或二分)

    4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 19322 Accepted: ...

  8. K - 4 Values whose Sum is 0(中途相遇法)

    K - 4 Values whose Sum is 0 Crawling in process... Crawling failed Time Limit:9000MS     Memory Limi ...

  9. POJ - 2785 4 Values whose Sum is 0 二分

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 25615   Accep ...

随机推荐

  1. matlab rank

    k =rank(A)    %a is matrix s = svd(A); tol = max(size(A))*eps(max(s)); r = sum(s > tol);

  2. es6 语法 (let 和const)

    一.let 和const 1.let 只在自己声明的块作用域中有效: function test(){ let a = 'a'; var b = 'b'; for(let i =1;i<3;i+ ...

  3. sublime text2 中标签高亮效果BracketHighlighter插件

    1.打开package Control,选择install Package 2.输入BracketHighlighter,回车 3.这样该插件会自动安装,安装后所有的提示高亮都是白色或没有提示.按 p ...

  4. RequireJS模块化编程详解

    1.模块的写法 模块化编程一般都有这么几个过渡过程,如下描述. 原始方法 function m1(){ //... } function m2(){ //... } 上面的函数m1()和m2(),组成 ...

  5. Redis 开启远程连接

    默认 bind 127.0.0.1 即绑定本机 IP,只能本机访问,你也可以绑定别的 IP 地址,如果注释掉,表示不限制 IP,所有 IP 都能访问 # ~~~ WARNING ~~~ If the ...

  6. 性能测试 基于Python结合InfluxDB及Grafana图表实时采集Linux多主机或Docker容器性能数据

    基于Python结合InfluxDB及Grafana图表实时采集Linux多主机性能数据   by:授客 QQ:1033553122 实现功能 1 测试环境 1 环境搭建 3 使用前提 3 使用方法 ...

  7. loadrunner 脚本优化-参数化方法

    脚本优化-参数化方法 by:授客 QQ:1033553122 方法一 1.确定需要参数化的内容 2.选中需要参数化的内容 3.右键选中的内容->Replace with a Parameter- ...

  8. MFC 键盘响应

    键盘响应 插入函数:在...对话框/menu中进入建立类模式,建立preTranslateMessage(MSG * pMsg) 在CXXXView类中,添加: BOOL CMy9_1View::Pr ...

  9. Django 2.0 URL新版配置介绍

    实例 先看一个例子: from django.urls import path from . import views urlpatterns = [ path('articles/2003/', v ...

  10. Spark GraphX快速入门

    GraphX是Spark用于图形并行计算的新组件.在较高的层次上,GraphX通过引入一个新的Graph抽象来扩展Spark RDD:一个定向的多图,其属性附加到每个定点和边.为了支持图计算,Grap ...