[matlab] 21.灰色预测、线性回归分析模型与最小二乘回归 (转载)
灰色预测的主要特点是只需要4个数据,就能解决历史数据少,序列的完整性以及可靠性低的问题,能将无规律的原始数据进行生成得到规律性较强的生成序列,易于检验
但缺点是只适合中短期的预测,且只适合指数级增长的预测.
在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据预处理后的数据序列称为生成列。对原始数据进行预处理,不是寻找它的统计规律和概率分布,而是将杂乱无章的原始数据列通过一定的方法处理,变成有规律的时间序列数据,即以数找数的规律,再建立动态模型。
灰色预测通过鉴别系统因素之间发展趋势的相异程度,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物的未来发展趋势
步骤
- 对原始数据进行累加
- 构造累加矩阵 BB 与常数向量
- 求解灰参数
- 将参数带入预测模型进行数据预测
例
已知某公司 1999——2008 年的利润为(单位:元/年):[89677,99215,109655,120333,135823,159878,182321,209407,246619,300670],现在要预测该公司未来几年的利润情况
clear
syms a b;
c=[a b]';
A=[89677,99215,109655,120333,135823,159878,182321,209407,246619,300670];
B=cumsum(A); % 原始数据累加
n=length(A);
for i=1:(n-1)
C(i)=(B(i)+B(i+1))/2; % 生成累加矩阵
end
% 计算待定参数的值
D=A;D(1)=[];
D=D';
E=[-C;ones(1,n-1)];
c=inv(E*E')*E*D;
c=c';
a=c(1);b=c(2);
% 预测后续数据
F=[];F(1)=A(1);
for i=2:(n+10)
F(i)=(A(1)-b/a)/exp(a*(i-1))+b/a ;
end
G=[];G(1)=A(1);
for i=2:(n+10)
G(i)=F(i)-F(i-1); %得到预测出来的数据
end
t1=1999:2008;
t2=1999:2018;
G
plot(t1,A,'k>',t2,G) %原始数据与预测数据的比较
xlabel('年份')
ylabel('利润')
灰色预测
例: 江水质的预测
对原题附件 4 中的数据进行整理可得表如下:
clear
syms a b;
c=[a b]';
A=[174 179 183 189 207 234 220.5 256 270 285];
B=cumsum(A); % 原始数据累加
n=length(A);
for i=1:(n-1)
C(i)=(B(i)+B(i+1))/2; % 生成累加矩阵
end
% 计算待定参数的值
D=A;D(1)=[];
D=D';
E=[-C;ones(1,n-1)];
c=inv(E*E')*E*D;
c=c';
a=c(1);b=c(2);
% 预测后续数据
F=[];F(1)=A(1);
for i=2:(n+10)
F(i)=(A(1)-b/a)/exp(a*(i-1))+b/a ;
end
G=[];G(1)=A(1);
for i=2:(n+10)
G(i)=F(i)-F(i-1); %得到预测出来的数据
end
t1=1995:2004;
t2=1995:2014;
G
plot(t1,A,'o',t2,G) %原始数据与预测数据的比较
xlabel('年份')
ylabel('利润')
灰色预测
例. 一元线性回归分析模型
X = [80;110;160;230;300];
Y = [4600;5500;5850;5350;6200];
XX = [ones(5,1),X]; % 为了在回归得到常数项系数 a,将 XX 作为回归的自变量
C =regress(Y,XX) % C 是一个回归系数矩阵
一元线性回归分析模型
根据下表预测 2011 年产量为 320 万件时的总成本
假设成本 Y 是产量 X 的一次线性函数,即二者的关系是:Y = a + b*X
因此,可以认为产量与成本的关系为:Y = 4626.0 + 5.0 * X。
当 X = 320 万件时,Y = 6226(万元)
clc, clear all; x=[23.80,27.60,31.60,32.40,33.70,34.90,43.20,52.80,63.80,73.40];
y=[41.4,51.8,61.70,67.90,68.70,77.50,95.90,137.40,155.0,175.0]; figure
plot(x,y,'k*-','linewidth',2) %作散点图 xlabel('x(职工工资总额)','fontsize', 12) %横坐标名
ylabel('y(商品零售总额)', 'fontsize',12) %纵坐标名
set(gca,'linewidth',2); % 采用最小二乘拟合
Lxx=sum((x-mean(x)).^2);
Lxy=sum((x-mean(x)).*(y-mean(y)));
b1=Lxy/Lxx;
b0=mean(y)-b1*mean(x);
y1=b1*x+b0;
hold on
plot(x, y1,'r','linewidth',2);
legend('原始值','拟合值')
最小二乘回归
在用最小二乘回归之前,先绘制了数据的散点图,这样就可以从图形上判断这些数据是否近似成线性关系。当发现它们的确近似在一条线上后,再用线性回归的方法进行回归,这样也更符合我们分析数据的一般思路。
更多详细具体参考 回归方法
MATLAB连续模型求解方法 微分方程
评价型模型求解方法
[matlab] 21.灰色预测、线性回归分析模型与最小二乘回归 (转载)的更多相关文章
- matlab批量灰色预测
没事玩了一下matlab 发现现在网上的代码都是一组数据预测 所以我就写个批量数据的预测 顺便学习下matlab ----------------------------------我是快乐的分割线- ...
- 灰色预测--matlab&python实现
function SGrey X0 = input('请输入原始负荷数据:'); %输入原始数据 n = length(X0); %原始n年数据 %累加生成 X1 = zeros(1,n); for ...
- R实现灰色预测
1.简介 预测就是借助于对过去的探讨去推测.了解未来.灰色预测通过原始数据的处理和灰色模型的建立,发现.掌握系统发展规律,对系统的未来状态做出科学的定量预测.对于一个具体的问题,究竟选择什么样的预测模 ...
- python 实现 灰色预测 GM(1,1)模型 灰色系统 预测 灰色预测公式推导
来源公式推导连接 https://blog.csdn.net/qq_36387683/article/details/88554434 关键词:灰色预测 python 实现 灰色预测 GM(1,1)模 ...
- 灰色预测原理及JAVA实现
最近在做项目时,用户不想使用平均值来判断当前数据状态,想用其他的方式来分析数据的变化状态,在查找了一些资料后,想使用灰色预测来进行数据的预测.下面的内容是从网上综合下来的,java代码也做了一点改动, ...
- 灰色预测 GM11模型
灰色预测实现见:https://www.jianshu.com/p/a35ba96d852b from pandas import Series from pandas import DataFram ...
- 数据挖掘-diabetes数据集分析-糖尿病病情预测_线性回归_最小平方回归
# coding: utf-8 # 利用 diabetes数据集来学习线性回归 # diabetes 是一个关于糖尿病的数据集, 该数据集包括442个病人的生理数据及一年以后的病情发展情况. # 数据 ...
- 【建模应用】PLS偏最小二乘回归原理与应用
@author:Andrew.Du 声明:本文为原创,转载请注明出处:http://www.cnblogs.com/duye/p/9031511.html,谢谢. 一.前言 1.目的: 我写这篇文章的 ...
- 【机器学习实战】第8章 预测数值型数据:回归(Regression)
第8章 预测数值型数据:回归 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/ ...
随机推荐
- Python 字典(Dictionary) 基本操作
Python字典是一种可变容器模型,可存储任意类型对象:如字符串.数字.元组等.它以键值对(key-value)的形式存在,因此相当于Hashmap在python中的实现. §1. 创建字典 字典由 ...
- Java 控制类的引用类型,合理使用内存
Java提供了 java.lang.ref包,该包下的类均与垃圾回收机制相关 先介绍Java对象的集中引用类型 1.强引用 强引用是最常见的,创建对象就是强引用,如 String a = new St ...
- C# 动态输出Dos命令执行结果
本文以一个简单的小例子讲解如何将命令行信息实时的输出到文本框中.仅供学习分享使用,如有不足之处,还请指正. 概述 在C#程序开发过程中,有时需要运行其它的程序并获得输出的结果来进行进一步的处理.一般第 ...
- 生产者、消费者模型---Queue类
Queue队列在几乎每种编程语言都会有,python的列表隐藏的一个特点就是一个后进先出(LIFO)队列.而本文所讨论的Queue是python标准库queue中的一个类.它的原理与列表相似,但是先进 ...
- 深圳市共创力咨询为某大型上市企业提供两天的UCD内训与辅导服务!
2017年5月23和24日两天,深圳市共创力咨询为国内某大型上市企业提供了为期两天的内训与辅导服务.本次执行培训与辅导任务的是UCD(基于用户体验的设计)资深顾问蔷薇女士.蔷薇老师分别从UCD理论.U ...
- Linux中安装硬盘后对硬盘的分区以及挂载
我将使用VM来进行模拟 先使用df看下我的电脑硬盘信息: df -h 可以看到只有一个sda1分区装载/boot,还有一个扩展分区 查看dev下的硬盘: 只有一个硬盘(两个分区) 注意: 如果你是ID ...
- [20181031]12c 在线移动数据文件.txt
[20181031]12c 在线移动数据文件.txt --//12c以前,移动或者改名数据文件是一项比较麻烦的事情,至少要停一下业务.而12c支持在线移动或者改名数据文件,并且有点不可思议--//的是 ...
- Vue2 学习笔记4
文中例子代码请参考github 父组件向子组件传值 组件实例定义方式,注意:一定要使用props属性来定义父组件传递过来的数据 <script> // 创建 Vue 实例,得到 ViewM ...
- 内核线程的进程描述符task_struct中的mm和active_mm
task_struct进程描述符中包含两个跟进程地址空间相关的字段mm, active_mm, struct task_struct { // ... struct mm_struct *mm; st ...
- 6. svg学习笔记-路径
路径相比于多边形<polygon>元素具有更强绘图能力,<polygon>元素可以绘制任意的多边形,而路径可以绘制任意的轮廓线,是线段,曲线,圆弧的组合形式.svg中可以使用& ...