灰色预测的主要特点是只需要4个数据,就能解决历史数据少,序列的完整性以及可靠性低的问题,能将无规律的原始数据进行生成得到规律性较强的生成序列,易于检验

但缺点是只适合中短期的预测,且只适合指数级增长的预测.

在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据预处理后的数据序列称为生成列。对原始数据进行预处理,不是寻找它的统计规律和概率分布,而是将杂乱无章的原始数据列通过一定的方法处理,变成有规律的时间序列数据,即以数找数的规律,再建立动态模型。

灰色预测通过鉴别系统因素之间发展趋势的相异程度,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物的未来发展趋势

步骤

  1. 对原始数据进行累加
  2. 构造累加矩阵 BB 与常数向量
  3. 求解灰参数
  4. 将参数带入预测模型进行数据预测

已知某公司 1999——2008 年的利润为(单位:元/年):[89677,99215,109655,120333,135823,159878,182321,209407,246619,300670],现在要预测该公司未来几年的利润情况

clear
syms a b;
c=[a b]';
A=[89677,99215,109655,120333,135823,159878,182321,209407,246619,300670];
B=cumsum(A); % 原始数据累加
n=length(A);
for i=1:(n-1)
C(i)=(B(i)+B(i+1))/2; % 生成累加矩阵
end
% 计算待定参数的值
D=A;D(1)=[];
D=D';
E=[-C;ones(1,n-1)];
c=inv(E*E')*E*D;
c=c';
a=c(1);b=c(2);
% 预测后续数据
F=[];F(1)=A(1);
for i=2:(n+10)
F(i)=(A(1)-b/a)/exp(a*(i-1))+b/a ;
end
G=[];G(1)=A(1);
for i=2:(n+10)
G(i)=F(i)-F(i-1); %得到预测出来的数据
end
t1=1999:2008;
t2=1999:2018;
G
plot(t1,A,'k>',t2,G) %原始数据与预测数据的比较
xlabel('年份')
ylabel('利润')

灰色预测

例: 江水质的预测

对原题附件 4 中的数据进行整理可得表如下:

clear
syms a b;
c=[a b]';
A=[174 179 183 189 207 234 220.5 256 270 285];
B=cumsum(A); % 原始数据累加
n=length(A);
for i=1:(n-1)
C(i)=(B(i)+B(i+1))/2; % 生成累加矩阵
end
% 计算待定参数的值
D=A;D(1)=[];
D=D';
E=[-C;ones(1,n-1)];
c=inv(E*E')*E*D;
c=c';
a=c(1);b=c(2);
% 预测后续数据
F=[];F(1)=A(1);
for i=2:(n+10)
F(i)=(A(1)-b/a)/exp(a*(i-1))+b/a ;
end
G=[];G(1)=A(1);
for i=2:(n+10)
G(i)=F(i)-F(i-1); %得到预测出来的数据
end
t1=1995:2004;
t2=1995:2014;
G
plot(t1,A,'o',t2,G) %原始数据与预测数据的比较
xlabel('年份')
ylabel('利润')

灰色预测

例. 一元线性回归分析模型

X = [80;110;160;230;300];
Y = [4600;5500;5850;5350;6200];
XX = [ones(5,1),X]; % 为了在回归得到常数项系数 a,将 XX 作为回归的自变量
C =regress(Y,XX) % C 是一个回归系数矩阵

一元线性回归分析模型

根据下表预测 2011 年产量为 320 万件时的总成本

假设成本 Y 是产量 X 的一次线性函数,即二者的关系是:Y = a + b*X

因此,可以认为产量与成本的关系为:Y = 4626.0 + 5.0 * X。 
当 X = 320 万件时,Y = 6226(万元)

clc, clear all;

x=[23.80,27.60,31.60,32.40,33.70,34.90,43.20,52.80,63.80,73.40];
y=[41.4,51.8,61.70,67.90,68.70,77.50,95.90,137.40,155.0,175.0]; figure
plot(x,y,'k*-','linewidth',2) %作散点图 xlabel('x(职工工资总额)','fontsize', 12) %横坐标名
ylabel('y(商品零售总额)', 'fontsize',12) %纵坐标名
set(gca,'linewidth',2); % 采用最小二乘拟合
Lxx=sum((x-mean(x)).^2);
Lxy=sum((x-mean(x)).*(y-mean(y)));
b1=Lxy/Lxx;
b0=mean(y)-b1*mean(x);
y1=b1*x+b0;
hold on
plot(x, y1,'r','linewidth',2);
legend('原始值','拟合值')

最小二乘回归

在用最小二乘回归之前,先绘制了数据的散点图,这样就可以从图形上判断这些数据是否近似成线性关系。当发现它们的确近似在一条线上后,再用线性回归的方法进行回归,这样也更符合我们分析数据的一般思路。

更多详细具体参考 回归方法

MATLAB连续模型求解方法 微分方程

元胞自动机

评价型模型求解方法

数学建模之机器学习

[matlab] 21.灰色预测、线性回归分析模型与最小二乘回归 (转载)的更多相关文章

  1. matlab批量灰色预测

    没事玩了一下matlab 发现现在网上的代码都是一组数据预测 所以我就写个批量数据的预测 顺便学习下matlab ----------------------------------我是快乐的分割线- ...

  2. 灰色预测--matlab&python实现

    function SGrey X0 = input('请输入原始负荷数据:'); %输入原始数据 n = length(X0); %原始n年数据 %累加生成 X1 = zeros(1,n); for ...

  3. R实现灰色预测

    1.简介 预测就是借助于对过去的探讨去推测.了解未来.灰色预测通过原始数据的处理和灰色模型的建立,发现.掌握系统发展规律,对系统的未来状态做出科学的定量预测.对于一个具体的问题,究竟选择什么样的预测模 ...

  4. python 实现 灰色预测 GM(1,1)模型 灰色系统 预测 灰色预测公式推导

    来源公式推导连接 https://blog.csdn.net/qq_36387683/article/details/88554434 关键词:灰色预测 python 实现 灰色预测 GM(1,1)模 ...

  5. 灰色预测原理及JAVA实现

    最近在做项目时,用户不想使用平均值来判断当前数据状态,想用其他的方式来分析数据的变化状态,在查找了一些资料后,想使用灰色预测来进行数据的预测.下面的内容是从网上综合下来的,java代码也做了一点改动, ...

  6. 灰色预测 GM11模型

    灰色预测实现见:https://www.jianshu.com/p/a35ba96d852b from pandas import Series from pandas import DataFram ...

  7. 数据挖掘-diabetes数据集分析-糖尿病病情预测_线性回归_最小平方回归

    # coding: utf-8 # 利用 diabetes数据集来学习线性回归 # diabetes 是一个关于糖尿病的数据集, 该数据集包括442个病人的生理数据及一年以后的病情发展情况. # 数据 ...

  8. 【建模应用】PLS偏最小二乘回归原理与应用

    @author:Andrew.Du 声明:本文为原创,转载请注明出处:http://www.cnblogs.com/duye/p/9031511.html,谢谢. 一.前言 1.目的: 我写这篇文章的 ...

  9. 【机器学习实战】第8章 预测数值型数据:回归(Regression)

    第8章 预测数值型数据:回归 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/ ...

随机推荐

  1. 2. 常见的Queue

    package com.gf.conn013; import java.util.ArrayList; import java.util.Iterator; import java.util.List ...

  2. learnVUE-note

    title: learnVUE-note date: 2018-02-27 15:57:37 tags: categories: 前端技术 --- 本文是自己在学习Vue中的 VUE事件处理 在事件处 ...

  3. RPC调用与GC垃圾回收

    RPC调用 多个服务协同完成一次业务时,由于业务约束(如红包不符合使用条件.账户余额不足等).系统故障(如网络或系统超时或中断.数据库约束不满足等),都可能造成服务处理过程在任何一步无法继续,使数据处 ...

  4. .Net Mvc 异步编程

    关于在mvc/webapi 中 async/await 异步编程的探究和整理 你可以用双手玩转多个球 查看调试器windbg和sos.dll调试器扩展或挖掘W3SVC日志 设置minWorkerThr ...

  5. [总结]WEB前端常用命令

    webpack等工具操作 自动创建package.json文件:npm init 如何根据package.json来自动安装包:npm install npm具体安装某个组件:npm install ...

  6. Java NIO 学习

    Java NIO提供了与标准IO不同的IO工作方式: Channels and Buffers(通道和缓冲区):标准的IO基于字节流和字符流进行操作的,而NIO是基于通道(Channel)和缓冲区(B ...

  7. Linux内核线程的思考与总结

    1.内核线程,只是一个称呼,实际上就是一个进程,有自己独立的TCB,参与内核调度,也参与内核抢占. 这个进程的特别之处有两点,第一.该进程没有前台.第二.永远在内核态中运行. 2.创建内核线程有两种方 ...

  8. 常用的JVM调优参数总结汇总【随时查阅学习】

    本文章参数根据后期用的参数会持续更新  --- (1)-Xms20M 表示设置JVM启动内存的最小值为20M,必须以M为单位 (2)-Xmx20M 表示设置JVM启动内存的最大值为20M,必须以M为单 ...

  9. Linux 中如何避免 rm -rf /*

    Linux 的删除命令中 rm中没有回收站的概念,一旦文件被删除比较难还原.更可怕的是rm -rf /*,连自己都能删 这命令太危险了,弄错了就核爆了,带来的损失的巨大的.比如 Gitlab.com ...

  10. android修改getprop读取到的ro.build.fingerprint属性

    在build/tools/buildinfo.sh中定义ro.build.fingerprint=$BUILD_FINGERPRINT. 然后在build/core/Makefile中给BUILD_F ...