【BZOJ5293】[BJOI2018]求和(前缀和,LCA)

题面

BZOJ

洛谷

题解

送分题???

预处理一下\(k\)次方的前缀和。

然后求个\(LCA\)就做完了?、、、

#include<iostream>
#include<cstdio>
using namespace std;
#define MOD 998244353
#define MAX 300300
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int s[51][MAX];
int n,Q;
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int dep[MAX],top[MAX],fa[MAX],size[MAX],hson[MAX];
void dfs1(int u,int ff)
{
fa[u]=ff;dep[u]=dep[ff]+1;size[u]=1;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;
dfs1(v,u);size[u]+=size[v];
if(size[v]>size[hson[u]])hson[u]=v;
}
}
void dfs2(int u,int tp)
{
top[u]=tp;if(hson[u])dfs2(hson[u],tp);
for(int i=h[u];i;i=e[i].next)
if(e[i].v!=fa[u]&&e[i].v!=hson[u])
dfs2(e[i].v,e[i].v);
}
int LCA(int u,int v)
{
while(top[u]^top[v])dep[top[u]]<dep[top[v]]?v=fa[top[v]]:u=fa[top[u]];
return dep[u]<dep[v]?u:v;
}
int main()
{
n=read();
for(int i=1;i<n;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
}
dep[0]=-1;dfs1(1,0);dfs2(1,1);dep[0]=0;
for(int i=1;i<=n;++i)
for(int j=1,pw=1;j<=50;++j)
s[j][i]=pw=1ll*pw*i%MOD;
for(int j=1;j<=50;++j)
for(int i=1;i<=n;++i)
s[j][i]=(s[j][i]+s[j][i-1])%MOD;
Q=read();
while(Q--)
{
int u=read(),v=read(),k=read(),lca=LCA(u,v),ans=0;
ans=(s[k][dep[u]]+s[k][dep[v]])%MOD;
ans=(ans+MOD-s[k][dep[lca]])%MOD;
ans=(ans+MOD-s[k][dep[fa[lca]]])%MOD;
printf("%d\n",ans);
}
return 0;
}

【BZOJ5293】[BJOI2018]求和(前缀和,LCA)的更多相关文章

  1. bzoj5293: [Bjoi2018]求和

    题目链接 bzoj5293: [Bjoi2018]求和 题解 暴力 对于lca为1的好坑啊.... 代码 #include<cmath> #include<cstdio> #i ...

  2. BZOJ5293:[BJOI2018]求和(LCA,差分)

    Description master 对树上的求和非常感兴趣.他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的k  次方和,而且每次的k 可能是不同的.此处节点深度的定义是这个节点 ...

  3. BZOJ5293: [Bjoi2018]求和 树上差分

    Description master 对树上的求和非常感兴趣.他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的k  次方和,而且每次的k 可能是不同的.此处节点深度的定义是这个节点 ...

  4. [BZOJ5293][BJOI2018]求和(倍增)

    裸的树上倍增. #include<cstdio> #include<cstring> #include<algorithm> #define rep(i,l,r) ...

  5. P4427 [BJOI2018]求和

    P4427 [BJOI2018]求和 同[TJOI2018]教科书般的扭曲虚空 懒得写了(雾 #include<bits/stdc++.h> #define il inline #defi ...

  6. LCA+差分【p4427】[BJOI2018]求和

    Description master 对树上的求和非常感兴趣.他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的\(k\) 次方和,而且每次的\(k\) 可能是不同的.此处节点深度的 ...

  7. Luogu P4427 [BJOI2018]求和

    这是一道巨狗题,我已无力吐槽为什么我怎么写都不过 我们对于这种无修改的边权题目有一个经典的树上差分套路: \(ans=sum_x+sum_y-2\cdot sum_{LCA(x,y)}\) 这里的\( ...

  8. 【刷题】BZOJ 5293 [Bjoi2018]求和

    Description master 对树上的求和非常感兴趣.他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的k 次方和,而且每次的k 可能是不同的.此处节点深度的定义是这个节点到 ...

  9. NOIP2015运输计划(树上前缀和+LCA+二分)

    Description 公元 2044 年,人类进入了宇宙纪元. L 国有 n 个星球,还有 n−1 条双向航道,每条航道建立在两个星球之间,这 n−1 条航道连通了 L 国的所有星球. 小 P 掌管 ...

随机推荐

  1. charles如何设置弱网

  2. 架构 规则引擎 quartz

    通向架构师的道路(第五天)之tomcat集群-群猫乱舞-云栖社区-阿里云https://yq.aliyun.com/articles/259343 商业规则引擎和开源规则引擎的测试对比 - qq_39 ...

  3. IdentityServer4【QuickStart】之切换到混合流并且添加API访问

    切换到混合流并且添加API访问 前面的示例中我们开发了API访问和用户认证,现在我们要将两个合并到一起. OpenID Connect&OAuth 2.0组合的美妙之处是,你可以使用单一协议和 ...

  4. [转帖]firewall-cmd

    firewall-cmd https://wangchujiang.com/linux-command/c/firewall-cmd.html 高手大作 等哪天需要防火墙了 再练习一下. Linux上 ...

  5. Collections斗地主案例

    package com.zhangxueliang.doudizhu; import java.util.ArrayList; import java.util.Collections; public ...

  6. Day 5-6 反射和内置方法之item系列

    python面向对象中的反射:通过字符串的形式操作对象相关的属性.python中的一切事物都是对象(都可以使用反射) #!_*_ coding:utf-8 _*_ class People: def ...

  7. Day 5-3 多态与多态性

    多态与多态性 鸭子类型 多态与多态性 多态:一类事物有多种形态.比如,动物有多种形态,人,狗,猪,豹子.水也有多种形态,冰,雪,水蒸气. #多态:同一类事物的多种形态 import abc class ...

  8. Day1 基础知识

    数据类型,字符编码 二进制: 定义:二进制数据是用0和1两个数码来表示的数.它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”.当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是 ...

  9. Hbase数据表解析

    demo为表的命名空间,user为表的名字you2个列族,一个为b.一个为o. NAME 为列族名,Replication_SCOPE实现一个远程集群的复制.compression数据压缩的类型 Hb ...

  10. DAY04、流程控制if、while、for

    一.if 判断 语法一: if 条件: # 以下是上一条if 的子代码块 print(子代码1) print(子代码2) print(子代码3) 示例: # 路边飘过一个生物,要不要表白? sex = ...