AHOI2013 差异 【后缀数组】
题目分析:
求出height以后很明显跨越最小height的一定贡献是最小height,所以对于区间找出最小height再将区间对半分。
代码:
#include<bits/stdc++.h>
using namespace std; const int maxn = ;
const int N = ; int n;
char str[maxn]; int sa[maxn],rk[maxn],X[maxn],Y[maxn];
int height[maxn],h[maxn],RMQ[maxn][],pos[maxn][]; int chk(int x,int k){
return rk[sa[x]]==rk[sa[x-]]&&rk[sa[x]+(<<k)]==rk[sa[x-]+(<<k)];
} void getsa(){
for(int i=;i<n;i++) X[str[i]]++;
for(int i=;i<=N;i++) X[i] += X[i-];
for(int i=n-;i>=;i--) sa[X[str[i]]--] = i;
for(int i = , num = ;i <= n;i++)
rk[sa[i]] = (str[sa[i]] == str[sa[i-]]?num:++num);
rk[sa[]] = ;
for(int k=;(<<k-)<=n;k++){
for(int i=;i<=N;i++) X[i] = ;
for(int i=n-(<<k-);i<n;i++) Y[i-n+(<<k-)+]=i;
for(int i=,j=(<<k-)+;i<=n;i++)
if(sa[i]>=(<<k-))Y[j++]=sa[i]-(<<k-);
for(int i=;i<n;i++) X[rk[i]]++;
for(int i=;i<=N;i++) X[i]+=X[i-];
for(int i=n;i>=;i--) sa[X[rk[Y[i]]]--] = Y[i];
int num = ; Y[sa[]] = ;
for(int i=;i<=n;i++) Y[sa[i]] = (chk(i,k-)?num:++num);
for(int i=;i<n;i++) rk[i] = Y[i];
if(num == n) break;
}
}
void getheight(){
for(int i=;i<n;i++){
if(i) h[i] = max(,h[i-]-); else h[i] = ;
if(rk[i] == ) continue;
int comp = sa[rk[i]-];
while(str[comp+h[i]] == str[i+h[i]])h[i]++;
}
for(int i=;i<n;i++) height[rk[i]] = h[i];
for(int i=;i<=n;i++) RMQ[i][] = height[i],pos[i][] = i;
for(int k=;(<<k)<=n;k++){
for(int i=;i<=n;i++){
if(i+(<<k-)>n) RMQ[i][k]=RMQ[i][k-],pos[i][k]=pos[i][k-];
else {
if(RMQ[i][k-]<RMQ[i+(<<k-)][k-]) pos[i][k] = pos[i][k-];
else pos[i][k] = pos[i+(<<k-)][k-];
RMQ[i][k] = min(RMQ[i][k-],RMQ[i+(<<k-)][k-]);
}
}
}
}
int getLCP(int L,int R){
if(L > R) swap(L,R);
if(L == R) return n-sa[L];
L++;
int k = ; while((<<k+)<=R-L+)k++;
if(RMQ[L][k]<RMQ[R-(<<k)+][k]) return pos[L][k];
else return pos[R-(<<k)+][k];
} long long ans = ; void divide(int l,int r){
if(l == r) return;
int ps = getLCP(l,r);
ans -= 2ll*(ps-l)*(r-ps+)*height[ps];
divide(l,ps-); divide(ps,r);
} void work(){
n = strlen(str);
getsa();
getheight();
for(int i=;i<=n;i++) ans += 1ll*i*i-i;
for(int i=;i<=n;i++) ans += 1ll*i*(n-i);
divide(,n);
printf("%lld\n",ans);
} int main(){
scanf("%s",str);
work();
return ;
}
AHOI2013 差异 【后缀数组】的更多相关文章
- bzoj 3238: [Ahoi2013]差异 -- 后缀数组
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MB Description Input 一行,一个字符串S Output 一行,一个 ...
- 【BZOJ3238】[Ahoi2013]差异 后缀数组+单调栈
[BZOJ3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...
- [AHOI2013] 差异 - 后缀数组,单调栈
[AHOI2013] 差异 Description 求 \(\sum {len(T_i) + len(T_j) - 2 lcp(T_i,T_j)}\) 的值 其中 \(T_i (i = 1,2,... ...
- BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2326 Solved: 1054[Submit][Status ...
- bzoj3238 [Ahoi2013]差异 后缀数组+单调栈
[bzoj3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...
- [BZOJ3238][AHOI2013]差异(后缀数组)
求和式的前两项可以直接算,问题是对于每对i,j计算LCP. 一个比较显然的性质是,LCP(i,j)是h[rk[i]+1~rk[j]]中的最小值. 从h的每个元素角度考虑,就是对每个h计算有多少对i,j ...
- 【bzoj3238】差异[AHOI2013](后缀数组+单调栈)
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3238 这道题从大概半年以前就开始啃了,不过当时因为一些细节没调出来,看了Sakits神犇 ...
- 【BZOJ-3238】差异 后缀数组 + 单调栈
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1561 Solved: 734[Submit][Status] ...
- BZOJ 3238: [Ahoi2013]差异 [后缀自动机]
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2512 Solved: 1140[Submit][Status ...
- [Ahoi2013]差异(后缀自动机)
/* 前面的那一坨是可以O1计算的 后面那个显然后缀数组单调栈比较好写??? 两个后缀的lcp长度相当于他们在后缀树上的lca的深度 那么我们就能够反向用后缀自动机构造出后缀树然后统计每个点作为lca ...
随机推荐
- 来,看看MySQL 5.6, 5.7, 8.0的新特性
对于MySQL的历史,相信很多人早已耳熟能详,这里就不要赘述.下面仅从产品特性的角度梳理其发展过程中的里程碑事件. 1995年,MySQL 1.0发布,仅供内部使用. 1996年,MySQL 3.11 ...
- 一篇 JPA 总结
概述 下面是 JDBC 在 Java 应用和数据库之间的位置,充当着一个中间者,供 Java 应用程序访问所有类别的数据库,建立一个标准 JPA 如同 JDBC 一样,为 Java 应用程序使用 OR ...
- 程序员修仙之路- CXO让我做一个计算器!!
菜菜呀,个税最近改革了,我得重新计算你的工资呀,我需要个计算器,你开发一个吧 CEO,CTO,CFO于一身的CXO X总,咱不会买一个吗? 菜菜 那不得花钱吗,一块钱也是钱呀··这个计算器支持加减乘除 ...
- 《React Native 精解与实战》书籍连载「Node.js 简介与 React Native 开发环境配置」
此文是我的出版书籍<React Native 精解与实战>连载分享,此书由机械工业出版社出版,书中详解了 React Native 框架底层原理.React Native 组件布局.组件与 ...
- hdu3294(马拉车模板)
注意:string会超时 #include<bits/stdc++.h> using namespace std; #define ll long long const double PI ...
- Daily Scrum 12.19
Member Task on 12.19 Task on 12.20 仇栋民 请假 完成Task972 : 完成活动评分基础功能 康家华 完成 Task1004 : 百度map UI优化 完成Task ...
- echarts使用笔记二:柱子堆叠
1.多个柱子堆叠效果,多用于各部分占比 app.title = '坐标轴刻度与标签对齐'; option = { title : { //标题 x : 'center', y : 5, text : ...
- .net WCF WF4.5 状态机、书签与持久化
想看源码请直接翻到最后,使用方式如下图 如果同时需要多个书签可以直接在需要的位置创建书签,会认为是同一个实例. 若需要实现的效果是同时需要好几个部门审核,那么只要在对应的位置同时创建多个书签即可. 编 ...
- js 精确验证身份证(地址编码、出生日期、校验位验证)
//身份证号合法性验证 //支持15位和18位身份证号 //支持地址编码.出生日期.校验位验证 function IdentityCodeValid(code) { ::::::::::::::::: ...
- SQLServer数据库分页
以 项目表 PM_Project 为例. PM_Project 全部内容如下(共6条数据): 一.Top – Not In - Top 方式分页 直接的,原始的,不采用函数,纯手动挡. 分步探索过 ...