树链剖分

建树之后,安装软件就是让跟节点到安装的节点路径所有点权+1,卸载软件就是让一个节点和他的子数-1

要求变化数量的话直接求和相减就行啦(绝对值)

注意一点,一开始的lazyatag应该是-1,因为0代表pushdown所有节点应该变成0,1同理。

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
}
const int N = 100005;
int n, cnt, dfn, head[N], size[N], depth[N], son[N], p[N], w[N], id[N], top[N];
int tree[N<<2], lazy[N<<2];
struct Edge { int v, next; } edge[N<<2]; void addEdge(int a, int b){
edge[cnt].v = b, edge[cnt].next = head[a], head[a] = cnt ++;
} void dfs1(int s, int fa){
depth[s] = depth[fa] + 1;
p[s] = fa;
size[s] = 1;
int child = -1;
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(u == fa) continue;
dfs1(u, s);
size[s] += size[u];
if(size[u] > child) child = size[u], son[s] = u;
}
} void dfs2(int s, int tp){
id[s] = ++dfn;
w[id[s]] = 0;
top[s] = tp;
if(son[s] != -1) dfs2(son[s], tp);
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(u == p[s] || u == son[s]) continue;
dfs2(u, u);
}
} void push_up(int rt){
tree[rt] = tree[rt << 1] + tree[rt << 1 | 1];
} void push_down(int rt, int l, int r){
if(lazy[rt] != -1){
int lson = rt << 1, rson = rt << 1 | 1, mid = (l + r) >> 1;
lazy[lson] = lazy[rson] = lazy[rt];
tree[lson] = lazy[rt] * (mid - l + 1);
tree[rson] = lazy[rt] * (r - mid);
lazy[rt] = -1;
}
} void buildTree(int rt, int l, int r){
if(l == r){
tree[rt] = w[l];
return;
}
int mid = (l + r) >> 1;
buildTree(rt << 1, l, mid);
buildTree(rt << 1 | 1, mid + 1, r);
push_up(rt);
} void modify(int rt, int l, int r, int modifyL, int modifyR, int e){
if(l == modifyL && r == modifyR){
lazy[rt] = e;
tree[rt] = (r - l + 1) * e;
return;
}
push_down(rt, l, r);
int mid = (l + r) >> 1;
if(modifyL > mid) modify(rt << 1 | 1, mid + 1, r, modifyL, modifyR, e);
else if(modifyR <= mid) modify(rt << 1, l, mid, modifyL, modifyR, e);
else{
modify(rt << 1, l, mid, modifyL, mid, e);
modify(rt << 1 | 1, mid + 1, r, mid + 1, modifyR, e);
}
push_up(rt);
} int query(int rt, int l, int r, int queryL, int queryR){
if(l == queryL && r == queryR){
return tree[rt];
}
push_down(rt, l, r);
int mid = (l + r) >> 1;
if(queryL > mid) return query(rt << 1 | 1, mid + 1, r, queryL, queryR);
else if(queryR <= mid) return query(rt << 1, l, mid, queryL, queryR);
else{
return query(rt << 1, l, mid, queryL, mid) +
query(rt << 1 | 1, mid + 1, r, mid + 1, queryR);
}
} void treeModify(int x, int y, int e){
while(top[x] != top[y]){
if(depth[top[x]] < depth[top[y]]) swap(x, y);
modify(1, 1, n, id[top[x]], id[x], e);
x = p[top[x]];
}
if(depth[x] > depth[y]) swap(x, y);
modify(1, 1, n, id[x], id[y], e);
} void sonModify(int x, int e){
modify(1, 1, n, id[x], id[x] + size[x] - 1, e);
} int main(){ full(head, -1), full(lazy, -1), full(son, -1);
n = read();
for(int i = 2; i <= n; i ++){
int u = read();
addEdge(u + 1, i), addEdge(i, u + 1);
}
dfs1(1, 0), dfs2(1, 1);
buildTree(1, 1, n);
int q = read();
while(q --){
char opt[20]; scanf("%s", opt);
int x = read(), a = query(1, 1, n, 1, n);
x ++;
if(opt[0] == 'i'){
treeModify(1, x, 1);
int b = query(1, 1, n, 1, n);
printf("%d\n", abs(a - b));
}
else if(opt[0] == 'u'){
sonModify(x, 0);
int b = query(1, 1, n, 1, n);
printf("%d\n", abs(a - b));
}
}
return 0;
}

BZOJ 4196 软件包管理器的更多相关文章

  1. BZOJ - 4196 软件包管理器 (树链剖分+dfs序+线段树)

    题目链接 设白色结点为未安装的软件,黑色结点为已安装的软件,则: 安装软件i:输出结点i到根的路径上的白色结点的数量,并把结点i到根的路径染成黑色.复杂度$O(nlog^2n)$ 卸载软件i:输出结点 ...

  2. BZOJ 4196: [Noi2015]软件包管理器 [树链剖分 DFS序]

    4196: [Noi2015]软件包管理器 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1352  Solved: 780[Submit][Stat ...

  3. Bzoj 4196: [Noi2015]软件包管理器 树链剖分

    4196: [Noi2015]软件包管理器 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 721  Solved: 419[Submit][Statu ...

  4. bzoj 4196 [Noi2015]软件包管理器 (树链剖分+线段树)

    4196: [Noi2015]软件包管理器 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2852  Solved: 1668[Submit][Sta ...

  5. bzoj 4196: [Noi2015]软件包管理器

    Description Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖( ...

  6. 【刷题】BZOJ 4196 [Noi2015]软件包管理器

    Description Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖( ...

  7. 软件包管理器(bzoj 4196)

    Description Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖( ...

  8. 4196. [NOI2015]软件包管理器【树链剖分】

    Description Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖( ...

  9. 4196: [Noi2015]软件包管理器

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 412  Solved: 251[Submit][Status][Discuss] Descriptio ...

随机推荐

  1. Java 小记 - 时间的处理与探究

    前言 时间的处理与日期的格式转换几乎是所有应用的基础职能之一,几乎所有的语言都会为其提供基础类库.作为曾经 .NET 的重度使用者,赖其优雅的语法,特别是可扩展方法这个神级特性的存在,我几乎没有特意关 ...

  2. Jvm 参数笔记

    Jvm参数含义 https://cloud.tencent.com/developer/article/1129474 从一道题说起 https://blog.csdn.net/crazylzxlzx ...

  3. pycharm 报错:pycharm please specify a different SDK name

    我在给项目配虚拟环境里的解释器的时候有没有遇到过这个问题的啊,就是一个正常的项目,解释器忽然丢了,解释器是配在虚拟环境里面的,再去选择解释器就一直报这个错,给现有项目添加虚拟环境的时候也是报这个错—— ...

  4. codeforces#552 D. Vanya and Triangles(几何)

    题意:给出n个不同的点,问能组成多少个不同的三角形 题解:对于每个点对,我们生成一个直线,用a*x+b=y表示,用map记录ab,这样就确定了一个直线,这样我们就能算出有多少点是共线的,这样复杂度就是 ...

  5. ImageProcessor组件

    ImageProcessor组件 开源免费的.NET图像即时处理的组件ImageProcessor   承接以前的组件系列,这个组件系列旨在介绍.NET相关的组件,让大家可以在项目中有一个更好的选择, ...

  6. fork分支与源分支同步代码

    最进软件工程课程要团队开发做个网站项目,于是我在团队里推了使用github这种网站来协同开发,但是出现了个问题:fork后的代码无法 与源分支代码同步,导致fork分支的代码只有自己写的那部分,而不是 ...

  7. [官网]How to configure the Microsoft Distributed Transaction Coordinator (MSDTC) on Linux

    How to configure the Microsoft Distributed Transaction Coordinator (MSDTC) on Linux APPLIES TO: SQL ...

  8. 428.x的n次幂

    实现 pow(x,n) 不用担心精度,当答案和标准输出差绝对值小于1e-3时都算正确 样例 Pow(2.1, 3) = 9.261 Pow(0, 1) = 0 Pow(1, 0) = 1 挑战 O(l ...

  9. MQ4入门篇(一)

    写一个下单功能,和一个平仓功能: 下单: 1:下单使用到的函 int OrderSend(string symbol, int cmd, double volume, double price, in ...

  10. vue中的适配:px2rem

    这应该是vue项目在适配移动端时候,最简单的方法之一下面是基本步骤(使用cnpm)1.下载并引入lib-flexible cnpm install --save lib-flexible 在main. ...