对图像进行形态学变换。变换对象一般为灰度图或二值图,功能函数放在morphology子模块内。

1、膨胀(dilation)

原理:一般对二值图像进行操作。找到像素值为1的点,将它的邻近像素点都设置成这个值。1值表示白,0值表示黑,因此膨胀操作可以扩大白色值范围,压缩黑色值范围。一般用来扩充边缘或填充小的孔洞。

功能函数:skimage.morphology.dilation(imageselem=None)

selem表示结构元素,用于设定局部区域的形状和大小。

from skimage import data
import skimage.morphology as sm
import matplotlib.pyplot as plt
img=data.checkerboard()
dst1=sm.dilation(img,sm.square(5)) #用边长为5的正方形滤波器进行膨胀滤波
dst2=sm.dilation(img,sm.square(15)) #用边长为15的正方形滤波器进行膨胀滤波 plt.figure('morphology',figsize=(8,8))
plt.subplot(131)
plt.title('origin image')
plt.imshow(img,plt.cm.gray) plt.subplot(132)
plt.title('morphological image')
plt.imshow(dst1,plt.cm.gray) plt.subplot(133)
plt.title('morphological image')
plt.imshow(dst2,plt.cm.gray)

分别用边长为5或15的正方形滤波器对棋盘图片进行膨胀操作,结果如下:

可见滤波器的大小,对操作结果的影响非常大。一般设置为奇数。

除了正方形的滤波器外,滤波器的形状还有一些,现列举如下:

morphology.square: 正方形

morphology.disk:  平面圆形

morphology.ball: 球形

morphology.cube: 立方体形

morphology.diamond: 钻石形

morphology.rectangle: 矩形

morphology.star: 星形

morphology.octagon: 八角形

morphology.octahedron: 八面体

注意,如果处理图像为二值图像(只有0和1两个值),则可以调用:

skimage.morphology.binary_dilation(image, selem=None)

用此函数比处理灰度图像要快。

2、腐蚀(erosion)

函数:skimage.morphology.erosion(imageselem=None)

selem表示结构元素,用于设定局部区域的形状和大小。

和膨胀相反的操作,将0值扩充到邻近像素。扩大黑色部分,减小白色部分。可用来提取骨干信息,去掉毛刺,去掉孤立的像素。

from skimage import data
import skimage.morphology as sm
import matplotlib.pyplot as plt
img=data.checkerboard()
dst1=sm.erosion(img,sm.square(5)) #用边长为5的正方形滤波器进行膨胀滤波
dst2=sm.erosion(img,sm.square(25)) #用边长为25的正方形滤波器进行膨胀滤波 plt.figure('morphology',figsize=(8,8))
plt.subplot(131)
plt.title('origin image')
plt.imshow(img,plt.cm.gray) plt.subplot(132)
plt.title('morphological image')
plt.imshow(dst1,plt.cm.gray) plt.subplot(133)
plt.title('morphological image')
plt.imshow(dst2,plt.cm.gray)

注意,如果处理图像为二值图像(只有0和1两个值),则可以调用:

skimage.morphology.binary_erosion(image, selem=None)

用此函数比处理灰度图像要快。

3、开运算(opening)

函数:skimage.morphology.openning(imageselem=None)

selem表示结构元素,用于设定局部区域的形状和大小。

先腐蚀再膨胀,可以消除小物体或小斑块。

from skimage import io,color
import skimage.morphology as sm
import matplotlib.pyplot as plt
img=color.rgb2gray(io.imread('d:/pic/mor.png'))
dst=sm.opening(img,sm.disk(9)) #用边长为9的圆形滤波器进行膨胀滤波 plt.figure('morphology',figsize=(8,8))
plt.subplot(121)
plt.title('origin image')
plt.imshow(img,plt.cm.gray)
plt.axis('off') plt.subplot(122)
plt.title('morphological image')
plt.imshow(dst,plt.cm.gray)
plt.axis('off')

注意,如果处理图像为二值图像(只有0和1两个值),则可以调用:

skimage.morphology.binary_opening(image, selem=None)

用此函数比处理灰度图像要快。

4、闭运算(closing)

函数:skimage.morphology.closing(imageselem=None)

selem表示结构元素,用于设定局部区域的形状和大小。

先膨胀再腐蚀,可用来填充孔洞。

from skimage import io,color
import skimage.morphology as sm
import matplotlib.pyplot as plt
img=color.rgb2gray(io.imread('d:/pic/mor.png'))
dst=sm.closing(img,sm.disk(9)) #用边长为5的圆形滤波器进行膨胀滤波 plt.figure('morphology',figsize=(8,8))
plt.subplot(121)
plt.title('origin image')
plt.imshow(img,plt.cm.gray)
plt.axis('off') plt.subplot(122)
plt.title('morphological image')
plt.imshow(dst,plt.cm.gray)
plt.axis('off')

注意,如果处理图像为二值图像(只有0和1两个值),则可以调用:

skimage.morphology.binary_closing(image, selem=None)

用此函数比处理灰度图像要快。

5、白帽(white-tophat)

函数:skimage.morphology.white_tophat(imageselem=None)

selem表示结构元素,用于设定局部区域的形状和大小。

将原图像减去它的开运算值,返回比结构化元素小的白点

from skimage import io,color
import skimage.morphology as sm
import matplotlib.pyplot as plt
img=color.rgb2gray(io.imread('d:/pic/mor.png'))
dst=sm.white_tophat(img,sm.square(21)) plt.figure('morphology',figsize=(8,8))
plt.subplot(121)
plt.title('origin image')
plt.imshow(img,plt.cm.gray)
plt.axis('off') plt.subplot(122)
plt.title('morphological image')
plt.imshow(dst,plt.cm.gray)
plt.axis('off')

6、黑帽(black-tophat)

函数:skimage.morphology.black_tophat(imageselem=None)

selem表示结构元素,用于设定局部区域的形状和大小。

将原图像减去它的闭运算值,返回比结构化元素小的黑点,且将这些黑点反色。

from skimage import io,color
import skimage.morphology as sm
import matplotlib.pyplot as plt
img=color.rgb2gray(io.imread('d:/pic/mor.png'))
dst=sm.black_tophat(img,sm.square(21)) plt.figure('morphology',figsize=(8,8))
plt.subplot(121)
plt.title('origin image')
plt.imshow(img,plt.cm.gray)
plt.axis('off') plt.subplot(122)
plt.title('morphological image')
plt.imshow(dst,plt.cm.gray)
plt.axis('off')

python数字图像处理(13):基本形态学滤波的更多相关文章

  1. python数字图像处理(四) 频率域滤波

    import matplotlib.pyplot as plt import numpy as np import cv2 %matplotlib inline 首先读入这次需要使用的图像 img = ...

  2. 「转」python数字图像处理(18):高级形态学处理

    python数字图像处理(18):高级形态学处理   形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一 ...

  3. python数字图像处理(17):边缘与轮廓

    在前面的python数字图像处理(10):图像简单滤波 中,我们已经讲解了很多算子用来检测边缘,其中用得最多的canny算子边缘检测. 本篇我们讲解一些其它方法来检测轮廓. 1.查找轮廓(find_c ...

  4. python数字图像处理(1):环境安装与配置

    一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...

  5. 初始----python数字图像处理--:环境安装与配置

    一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...

  6. Win8 Metro(C#)数字图像处理--2.65形态学轮廓提取算法

    原文:Win8 Metro(C#)数字图像处理--2.65形态学轮廓提取算法  [函数名称]   形态学轮廓提取函数       WriteableBitmap Morcontourextract ...

  7. python数字图像处理(18):高级形态学处理

    形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一个凸多边形,这个凸多边形将图片中所有的白色像素点都包含 ...

  8. python数字图像处理(14):高级滤波

    本文提供更多更强大的滤波方法,这些方法放在filters.rank子模块内. 这些方法需要用户自己设定滤波器的形状和大小,因此需要导入morphology模块来设定. 1.autolevel 这个词在 ...

  9. python数字图像处理(10):图像简单滤波

    对图像进行滤波,可以有两种效果:一种是平滑滤波,用来抑制噪声:另一种是微分算子,可以用来检测边缘和特征提取. skimage库中通过filters模块进行滤波操作. 1.sobel算子 sobel算子 ...

随机推荐

  1. git报错 error: cannot stat ‘file’: Permission denied

    切换分支时报错: error: cannot stat ‘file’: Permission denied 解决方法:退出编辑器.浏览器.资源管理器等,然后再切换就可以了.

  2. 给Macbook装系统的网址

       

  3. 安装concrete时提示“...database does not support InnoDB database tables..."如何解决

    安装很多系统时,经常有有提示: "...database does not support InnoDB database tables..." 解决办法: 找到MySQL的配置文 ...

  4. mysql远程链接 方法和flush-hosts

    有时候会发现要用远程链接mysql 1 先要在mysql的host的机器上修改mysql表,最快就是复制一下本地localhost,现在phpmyadmin复制功能什么的很好用,然后把host列中的l ...

  5. 利用mysql对特殊字符和超长字符会进行截断的特性 进行存储型XSS攻击——WordPress <4.1.2 & <=4.2 存储型xss

    转自:Baidu Security LabXteam http://xteam.baidu.com/?p=177 漏洞概述 本次漏洞出现两个使用不同方式截断来实现的存储型xss,一种为特殊字符截断,一 ...

  6. 烂泥:KVM中安装Windows Server 2008 R2系统

    本文由秀依林枫提供友情赞助,首发于烂泥行天下. 在前一篇文章中,我介绍了有关在KVM中的安装Centos系统.接下来,就来介绍如何在KVM中安装Windows系统. 注意:在此我安装的是windows ...

  7. diff, cmp, patch

    diff 以行为单位比较两个文件之间的差异,经常用来查看同一个文件的新旧版本的差异,通常用在文本文件的比较,可以使用重定向'>'制作补丁文档,通常以.patch结尾 \(diff [-bBi] ...

  8. poj 2195 KM算法

    题目链接:http://poj.org/problem?id=2195 KM算法模板~ 代码如下: #include "stdio.h" #include "string ...

  9. (一)openwrt源码目录概述

    前言 这段时间总是在和openwrt打交道,之前也零零散散地写过一点,还是希望能有点体系.还记得我刚看到源代码的时候,觉得无从下手.我想从Makefile的整个执行过程入手,搞清楚编译源代码的几个小时 ...

  10. node.js环境搭建

    (1)Node.js安装 Node.js安装包及源码下载地址为: https://nodejs.org/download/   , 双击下载后的安装包.msi,检查Node.js版本命令:node - ...