欧拉函数裸题。

欧拉函数:在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。

欧拉函数的定义: E(N)= (  区间[1,N-1] 中与 N 互质的整数个数).

  对于 积性函数 F(X*Y),当且仅当 GCD(X,Y)= 1 时, F(X*Y) = F(X)* F(Y)

  任意整数可因式分解为如下形式:

        其中( p1, p2 ... pk 为质数, ei 为次数 ) 

  所以

    

  因为 欧拉函数 E(X)为积性函数, 所以

    

  对于    , 我们知道 因为pi 为质数,所以 [ 1, pi-1 ] 区间的数都与 pi 互质

  对于 区间[ 1,   ]  ,共有  个数, 因为  只有一个质因子,

  所以与  约数大于1 的必定包含 质因子   , 其数量为 

    所以      

  又 E(N)为积性函数,所以可得 :

    

  又因为       其中( p1, p2 ... pk 为质数, ei 为次数 ) 

         但是此计算公式,除法过多,所以计算速度较慢

  在程序中利用欧拉函数如下性质,可以快速求出欧拉函数的值 ( P为N的质因子 )

    若(N%P==0 && (N/P)%P==0) 则有:E(N)=E(N/P)*P;
 
    若(N%P==0 && (N/P)%P!=0) 则有:E(N)=E(N/P)*(P-1);
 

poj2407的更多相关文章

  1. poj2407(欧拉函数模板题)

    题目链接:https://vjudge.net/problem/POJ-2407 题意:给出n,求0..n-1中与n互质的数的个数. 思路:欧拉函数板子题,先根据唯一分解定理求出n的所有质因数p1,p ...

  2. POJ2407 Relatives(欧拉函数)

    题目问有多少个小于n的正整数与n互质. 这个可以用容斥原理来解HDU4135.事实上这道题就是求欧拉函数$φ(n)$. $$φ(n)=n(1-1/p_1)(1-1/p_2)\dots(1-1/p_m) ...

  3. poj2407 Relatives 欧拉函数基本应用

    题意很简单 就是欧拉函数的定义: 欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n) .题目求的就是φ(n) 根据 通式:φ(x)=x*(1-1/p1)*(1-1/ ...

  4. POJ2407–Relatives(欧拉函数)

    题目大意 给定一个正整数n,要求你求出所有小于n的正整数当中与n互质的数的个数 题解 欧拉函数模板题~~~因为n过大~~~所以直接用公式求 代码: #include<iostream> # ...

  5. POJ2407(欧拉函数)

    Relatives Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13598   Accepted: 6771 Descri ...

  6. poj2407(欧拉函数模板)

    sqrt(n)复杂度 欧拉函数模板 #include <iostream> #include <cstdio> #include <queue> #include ...

  7. 51Nod 1136 欧拉函数 Label:数论

    对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...

  8. 数论/the first wave

    线性筛素数(原来我之前学的不是线性的啊... void getprime(){ rep(i,2,nmax){ if(!vis[i]) prime[++prime[0]]=i; for(int j=1; ...

  9. poj3090--欧拉函数

    #include<iostream> using namespace std; //欧拉函数 int eular(int n){ ,i; ;i*i<=n;i++){ ){ n/=i; ...

随机推荐

  1. 用js实现在加载完成一个页面后自动执行一个方法

    <%@ page language="java" import="java.util.*" pageEncoding="UTF-8"% ...

  2. 在SharePoint中无代码开发InfoPath应用: 获取当前用户信息

    很多种不同的场景下,会需要得到当前的用户信息,例如需要根据当前用户判断组,进而控制权限. 首先InfoPath提供了一个userName方法,来实现这个目的,不过这个方法的问题是只能获得不包含域名的用 ...

  3. 在IntelliJ IDEA14中安装go语言插件

    go语言的集成开发环境仍不成熟,试用了liteide,感觉很不适应,弹出菜单对程序员的干扰太大.所以就试大牌的IntelliJ IDEA,这工具本来是JAVA开发阵营的,不过它已经变为一个非常强大的支 ...

  4. android XMl 解析神奇xstream 五: 把复杂对象转换成 xml ,并写入SD卡中的xml文件

    前言:对xstream不理解的请看: android XMl 解析神奇xstream 一: 解析android项目中 asset 文件夹 下的 aa.xml 文件 android XMl 解析神奇xs ...

  5. 【读书笔记】iOS-NSString的length

    NSString的length方法能够准确无误地处理国际字符串,如含有俄文,中文或者日本文字符的字符串,以及使用Unicode国际字符标准的字符串.在C语言中处理这些国际字符串是件令人非常头疼的事情 ...

  6. 【iOS开发】多屏尺的自动适配 AutoLayout (纯代码方式)

    关于AutoLayout,最早从iOS6开始引入使用.   主要功能是使用约束,对视图进行相对布局,以适应不同屏尺的变换.   网上大量的资料都在介绍xib和storyboard,如何使用AutoLa ...

  7. GCD中的dispatch_apply的用法及作用

    GCD中的dispatch_apply的用法及作用 (一)dispatch_apply的基本用法 dispatch_apply函数是dispatch_sync函数和Dispatch Group的关联A ...

  8. const,static,extern简介(重要)

    一.const与宏的区别(面试题): const简介:之前常用的字符串常量,一般是抽成宏,但是苹果不推荐我们抽成宏,推荐我们使用const常量. 编译时刻:宏是预编译(编译之前处理),const是编译 ...

  9. iOS开发网络篇—NSURLConnection基本使用(一)

      一.NSURLConnection的常用类 (1)NSURL:请求地址 (2)NSURLRequest:封装一个请求,保存发给服务器的全部数据,包括一个NSURL对象,请求方法.请求头.请求体.. ...

  10. js动态加载css文件和js文件的方法

    今天研究了下js动态加载js文件和css文件的方法. 网上发现一个动态加载的方法.摘抄下来,方便自己以后使用 [code lang="html"] <html xmlns=& ...