1、求解方程。

  并不是所有的方程都有求根公式,或者求根公式很复杂,导致求解困难。利用牛顿法,可以迭代求解。

  原理是利用泰勒公式,在x0处展开,且展开到一阶,即f(x) = f(x0)+(x-x0)f'(x0)

  求解方程f(x)=0,即f(x0)+(x-x0)*f'(x0)=0,求解x = x1=x0-f(x0)/f'(x0),因为这是利用泰勒公式的一阶展开,f(x) = f(x0)+(x-x0)f'(x0)处并不是完全相等,而是近似相等,这里求得的x1并不能让f(x)=0,只能说f(x1)的值比f(x0)更接近f(x)=0,于是乎,迭代求解的想法就很自然了,可以进而推出x(n+1)=x(n)-f(x(n))/f'(x(n)),通过迭代,这个式子必然在f(x*)=0的时候收敛。整个过程如下图:

  2、牛顿法用于最优化

  在最优化的问题中,线性最优化至少可以使用单纯行法求解,但对于非线性优化问题,牛顿法提供了一种求解的办法。假设任务是优化一个目标函数f,求函 数f的极大极小问题,可以转化为求解函数f的导数f'=0的问题,这样求可以把优化问题看成方程求解问题(f'=0)。剩下的问题就和第一部分提到的牛顿 法求解很相似了。

  这次为了求解f'=0的根,把f(x)的泰勒展开,展开到2阶形式:

  这个式子是成立的,当且仅当 Δx 无线趋近于0。此时上式等价与:

  求解:

  得出迭代公式:

  一般认为牛顿法可以利用到曲线本身的信息,比梯度下降法更容易收敛(迭代更少次数),如下图是一个最小化一个目标方程的例子,红色曲线是利用牛顿法迭代求解,绿色曲线是利用梯度下降法求解。

  在上面讨论的是2维情况,高维情况的牛顿迭代公式是:

  其中H是hessian矩阵,定义为:

  高维情况依然可以用牛顿迭代求解,但是问题是Hessian矩阵引入的复杂性,使得牛顿迭代求解的难度大大增加,但是已经有了解决这个问题的办法就 是Quasi-Newton methond,不再直接计算hessian矩阵,而是每一步的时候使用梯度向量更新hessian矩阵的近似。Quasi-Newton method的详细情况我还没完全理解,且听下回分解吧。。。

  http://blog.sina.com.cn/s/blog_5364f9f20101dkyr.html

Hession矩阵与牛顿迭代法的更多相关文章

  1. 牛顿迭代法解非线性方程组(MATLAB版)

    牛顿迭代法,又名切线法,这里不详细介绍,简单说明每一次牛顿迭代的运算:首先将各个方程式在一个根的估计值处线性化(泰勒展开式忽略高阶余项),然后求解线性化后的方程组,最后再更新根的估计值.下面以求解最简 ...

  2. NOIP2001 一元三次方程求解[导数+牛顿迭代法]

    题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差 ...

  3. Atitit 迭代法  “二分法”和“牛顿迭代法 attilax总结

    Atitit 迭代法  "二分法"和"牛顿迭代法 attilax总结 1.1. ."二分法"和"牛顿迭代法"属于近似迭代法1 1. ...

  4. 牛顿迭代法实现平方根函数sqrt

    转自利用牛顿迭代法自己写平方根函数sqrt 给定一个正数a,不用库函数求其平方根. 设其平方根为x,则有x2=a,即x2-a=0.设函数f(x)= x2-a,则可得图示红色的函数曲线.在曲线上任取一点 ...

  5. sqrt (x) 牛顿迭代法

    参考: 0开方 是 0 1的开方式 1 2的开方式 1.4 3.的开方=(1.4+3/1.4)/2 牛顿迭代法:学习自 http://blog.csdn.net/youwuwei2012/articl ...

  6. 【清橙A1094】【牛顿迭代法】牛顿迭代法求方程的根

    问题描述 给定三次函数f(x)=ax3+bx2+cx+d的4个系数a,b,c,d,以及一个数z,请用牛顿迭代法求出函数f(x)=0在z附近的根,并给出迭代所需要次数. 牛顿迭代法的原理如下(参考下图) ...

  7. 基于visual Studio2013解决C语言竞赛题之0422牛顿迭代法

      题目

  8. 牛顿迭代法解指数方程(aX + e^x解 = b )

    高中好友突然问我一道这样的问题,似乎是因为他们专业要做一个计算器,其中的一道习题是要求计算器实现这样的功能. 整理一下要求:解aX + e^X = b 方程.解方程精度要求0.01,给定方程只有一解, ...

  9. 牛顿迭代法(Newton's Method)

    牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.但是,这一方法在牛顿生前并未公开发表. 牛顿法的作用是使用迭代的方法来求解函数方程的根. ...

随机推荐

  1. 安卓内存不足(删除data/dalvik-cache目录)

    alvik-cache alvik-cache名词解释: 在系统data/dalvik-cache文件夹里有很多安装卸载文件(优化过的字节码),这些文件是当你安装好一个应用程序后,系统会自动生成的一个 ...

  2. Unity3D面试题汇总

    1.请描述游戏动画有哪几种,以及其原理. 2.alpha blend 工作原理 3.写光照计算中的diffuse的计算公式 4.lod是什么,优缺点是什么 5.两种阴影判断的方法工作原理 6.MipM ...

  3. 使用List的addAll()方法请判空指针

    在写代码的时候经常会用到List,Set的addAll()方法,但是要注意addAll()方法不能传入空指针. package link.mengya.utils; import link.mengy ...

  4. pl/sql developer中的SQL语句

    1.无论是在查询还是在插入的时候,值都必须是单引号‘’,否则会报错,ORA-00904:标识符无效.

  5. WPF登陆窗口、主窗口切换问题

    代码 MainWindow mwin = new MainWindow(); Application.Current.MainWindow = mwin; this.Close(); mwin.Sho ...

  6. 4201 TortoiseSVN常用配置

    在Windows下推荐使用乌龟(Tortoise)SVN客户端. TortoiseSVN 是 Subversion 版本控制系统的一个免费开源客户端,可以超越时间的管理文件和目录.文件保存在中央版本库 ...

  7. 如何在Web服务器80端口上开启SSH服务

    本文所讨论的网络端口复用并非指网络编程中采用SO_REUSEADDR选项的 Socket Bind 复用.它更像是一个带特定路由功能的端口转发工具,在应用层实现. 背景 笔者所处网络中防火墙只开放了一 ...

  8. Linux 网络编程一(TCP/IP协议)

    以前我们讲过进程间通信,通过进程间通信可以实现同一台计算机上不同的进程之间通信. 通过网络编程可以实现在网络中的各个计算机之间的通信. 进程能够使用套接字实现和其他进程或者其他计算机通信. 同样的套接 ...

  9. ZooKeeper学习第三期---Zookeeper命令操作

    一.Zookeeper的四字命令 Zookeeper支持某些特定的四字命令字母与其的交互.他们大多数是查询命令,用来获取Zookeeper服务的当前状态及相关信息.用户在客户端可以通过telnet或n ...

  10. 基于.NET平台常用的框架整理 (转)

    http://www.cnblogs.com/hgmyz/p/5313983.html 自从学习.NET以来,优雅的编程风格,极度简单的可扩展性,足够强大开发工具,极小的学习曲线,让我对这个平台产生了 ...