POJ 2699 The Maximum Number of Strong Kings Description
The Maximum Number of Strong Kings
Description
![](http://poj.org/images/2699_1.jpg)
for k = 1, 2, . . . , n and equality holds when k = n. A player x in a tournament is a strong king if and only if x beats all of the players whose scores are greater than the score of x. For a score sequence S, we say that a tournament T realizes S if S(T) = S. In particular, T is a heavy tournament realizing S if T has the maximum number of strong kings among all tournaments realizing S. For example, see T2 in Figure 1. Player a is a strong king since the score of player a is the largest score in the tournament. Player b is also a strong king since player b beats player a who is the only player having a score larger than player b. However, players c, d and e are not strong kings since they do not beat all of the players having larger scores.
The purpose of this problem is to find the maximum number of strong kings in a heavy tournament after a score sequence is given. For example,Figure 1 depicts two possible tournaments on five players with the same score sequence (1, 2, 2, 2, 3). We can see that there are at most two strong kings in any tournament with the score sequence (1, 2, 2, 2, 3) since the player with score 3 can be beaten by only one other player. We can also see that T2 contains two strong kings a and b. Thus, T2 is one of heavy tournaments. However, T1 is not a heavy tournament since there is only one strong king in T1. Therefore, the answer of this example is 2.
![](http://poj.org/images/2699_2.jpg)
Input
Output
Sample Input
5
1 2 2 2 3
1 1 3 4 4 4 4
3 3 4 4 4 4 5 6 6 6
0 3 4 4 4 5 5 5 6
0 3 3 3 3 3
Sample Output
2
4
5
3
5
#include<cstdio>
#include<vector>
#include<queue>
#include<cstring>
using namespace std;
typedef long long LL;
const int MAXN=;
int s[],id[][],v[][],cnt1,cnt2;
char str[];
struct dinic
{
struct Edge
{
int from,to,cap,flow;
Edge(){}
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){};
};
int s,t,d[MAXN],cur[MAXN];
bool vis[MAXN];
vector<Edge>edges;
vector<int>G[MAXN];
inline void init()
{
for(int i=;i<;i++)G[i].clear();
edges.clear();
}
void addedge(int from,int to,int cap)
{
edges.push_back((Edge){from,to,cap,});
edges.push_back((Edge){to,from,,});
int m=edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
}
bool bfs()
{
memset(vis,,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=;
vis[s]=;
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=;i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if(!vis[e.to]&&e.cap>e.flow)
{
vis[e.to]=;
d[e.to]=d[x]+;
q.push(e.to);
}
}
}
return vis[t];
}
int dfs(int x,int a)
{
if(x==t||a==)return a;
int flow=,f;
for(int& i=cur[x];i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if(d[x]+==d[e.to]&&(f=dfs(e.to,min(a,e.cap-e.flow)))>)
{
e.flow+=f;
edges[G[x][i]^].flow-=f;
flow+=f;
a-=f;
if(a==)break;
}
}
return flow;
}
int maxflow(int s,int t)
{
this->s=s,this->t=t;
int flow=;
while(bfs())
{
memset(cur,,sizeof(cur));
flow+=dfs(s,2e5+);
}
return flow;
}
}dc;
bool check(int x)
{
dc.init();
memset(v,,sizeof(v));
for(int i=;i<=cnt1;i++)
dc.addedge(,i,s[i]);
for(int i=;i<=x;i++)
for(int j=i+;j<=x;j++)
if(s[i]>s[j])
dc.addedge(j,id[i][j],),v[i][j]=;
for(int i=;i<=cnt1;i++)
for(int j=i+;j<=cnt1;j++)
{
dc.addedge(id[i][j],cnt1+cnt2+,);
if(!v[i][j])
dc.addedge(i,id[i][j],),dc.addedge(j,id[i][j],);
}
return dc.maxflow(,cnt1+cnt2+)==cnt1*(cnt1-)/;
}
int main()
{
int T;
scanf("%d",&T);
getchar();
while(T--)
{
gets(str);
cnt1=cnt2=;
for(int i=,len=strlen(str);i<len;i++)
if(str[i]!=' ')
s[++cnt1]=(int)str[i]-'';
for(int i=;i<=cnt1/;i++)
swap(s[i],s[cnt1-i+]);
for(int i=;i<=cnt1;i++)
for(int j=i+;j<=cnt1;j++)
id[i][j]=++cnt2+cnt1;
for(int i=cnt1;i>=;i--)
if(check(i))
{
printf("%d\n",i);
break;
}
}
return ;
}
POJ 2699 The Maximum Number of Strong Kings Description的更多相关文章
- POJ 2699 The Maximum Number of Strong Kings (最大流+枚举)
http://poj.org/problem?id=2699 题意: 一场联赛可以表示成一个完全图,点表示参赛选手,任意两点u, v之间有且仅有一条有向边(u, v)或( v, u),表示u打败v或v ...
- POJ - 2699 The Maximum Number of Strong Kings (最大流+枚举)
题意:有n(n<=10)个选手,两两之间打比赛,共有n*(n-1)/2场比赛,赢一场得1分.给出每个人最后的得分.求有多少个定义如下的strong king:赢了所有得分比自己高的人或本身就是分 ...
- poj 2699 The Maximum Number of Strong Kings 枚举 最大流
题目链接 题意 对于一个竞赛图(有向完全图),其顶点是选手,边是比赛,边\(e=(u,v)\)代表该场比赛中\(u\)战胜\(v\). 现定义选手的分数为其战胜的人的个数(即竞赛图中点的出度).并且定 ...
- poj 2699 The Maximum Number of Strong Kings【最大流+枚举】
因为n很小所以从大到小枚举答案.(从小到大先排个序,因为显然胜利场次越多越容易成为strong king.然后对于每个枚举出来的ans建图.点分别表示人和比赛.s向所有人连接流量为胜利场次的边,所有比 ...
- POJ 2699 The Maximum Number of Strong Kings ——网络流
一定存在一种最优方案,使得分数前几个人是SK 所以我们可以二分答案或者枚举,然后就是经典的网络流建模. 另:输入很Excited #include <cstdio> #include &l ...
- POJ2699:The Maximum Number of Strong Kings(枚举+贪心+最大流)
The Maximum Number of Strong Kings Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2488 ...
- POJ2699 The Maximum Number of Strong Kings
Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2102 Accepted: 975 Description A tour ...
- 【POJ2699】The Maximum Number of Strong Kings(网络流)
Description A tournament can be represented by a complete graph in which each vertex denotes a playe ...
- 【POJ】【2699】The Maximum Number of Strong Kings
网络流/最大流/二分or贪心 题目大意:有n个队伍,两两之间有一场比赛,胜者得分+1,负者得分+0,问最多有几只队伍打败了所有得分比他高的队伍? 可以想到如果存在这样的“strong king”那么一 ...
随机推荐
- Flume1.5.0的安装、部署、简单应用(含伪分布式、与hadoop2.2.0、hbase0.96的案例)
目录: 一.什么是Flume? 1)flume的特点 2)flume的可靠性 3)flume的可恢复性 4)flume 的 一些核心概念 二.flume的官方网站在哪里? 三.在哪里下载? 四.如何安 ...
- elasticsearch【更新】操作
基于上一篇博文基础上,进行es的操作,document的新增比较简单,就不说了,这里主要说说更新操作. 更新操作,有两大类,一个是Replace,一个是Update,就是说一个是替换,一个是更新. 替 ...
- [转]centos 下 autoconf版本升级
首先查看当前版本 #rpm -qf /usr/bin/autoconf autoconf-2.63-5.1.el6.noarch 卸载当前版本 rpm -e --nodeps autoconf-2.6 ...
- SQL Server 2012 创建操作员
数据库可以通知操作员,给操作员发送邮件,就要在SQL Server 的代理中启用数据库邮件,前提是先配置出数据库邮件 右键SQL Server代理,选择属性,按下图设置 保存后,右键操作员,选择新建操 ...
- ios device model 详细内容
参考 这里:https://theiphonewiki.com/wiki/Models http://en.wikipedia.org/wiki/List_of_iOS_devices http:// ...
- python中threading模块详解(一)
python中threading模块详解(一) 来源 http://blog.chinaunix.net/uid-27571599-id-3484048.html threading提供了一个比thr ...
- 5、Linux 系统基本文件管理
1.Linux系统目录结构 /etc ----> 配置文件 /boot ----> 引导分区/挂载点, boot loader 的静态链接文件,存放与Linux启动相关的程序 ...
- haproxy+keepalived实现高可用负载均衡
软件负载均衡一般通过两种方式来实现:基于操作系统的软负载实现和基于第三方应用的软负载实现.LVS就是基于Linux操作系统实现的一种软负载,HAProxy就是开源的并且基于第三应用实现的软负载. HA ...
- Android:去掉默认的标题bar
要使用自己定义的bar,只需要在layout文件中添加:<include layout="@layout/actionbar" />;当然你需要新建一个actionba ...
- 六、通过插件如何创建自己的MEL command
1. MAYA API支持不同类型的plugin (1)Command Plugin——扩充MEL命令 (2)Tool Commands——通过鼠标输出 (3)DG plugin——对场景添加新的操作 ...