[转]http://www.cnblogs.com/myhappylife/p/5006774.html

1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0

3.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。

4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20

5.in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3

6.下面的查询也将导致全表扫描:
select id from t where name like '%abc%'
若要提高效率,可以考虑全文检索。

7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num

8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2

9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)='abc' // oracle总有的是substr函数。
select id from t where datediff(day,createdate,'2005-11-30')=0 //查过了确实没有datediff函数。
应改为:
select id from t where name like 'abc%'
select id from t where createdate>='2005-11-30' and createdate<'2005-12-1' //
oracle 中时间应该把char 转换成 date 如: createdate >= to_date('2005-11-30','yyyy-mm-dd')

10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。

12.不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(...)

13.很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)

14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

15.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。

16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

18.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

21.避免频繁创建和删除临时表,以减少系统表资源的消耗。

22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。

23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。

27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。

29.尽量避免大事务操作,提高系统并发能力。

30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

//自己再加上几句

31.使用 union all 里面不是 union

Oracle大数据常见优化查询的更多相关文章

  1. DB2大数据量优化查询解决方案

    利用DB2表分区的功能对大数据量的表进行分区,可以优化查询. 表分区介绍: 表分区是一种数据组织方案,它根据一列或多列中的值把表数据划分为多个称为数据分区 的存储对象. (我觉得表分区就类似于Wind ...

  2. mysql处理大数据量的查询速度究竟有多快和能优化到什么程度

    mysql处理大数据量的查询速度究竟有多快和能优化到什么程度 深圳-ftx(1433725026) 18:10:49  mysql有没有排名函数啊 横瓜(601069289) 18:13:06  无 ...

  3. MySQL大数据量分页查询方法及其优化

    MySQL大数据量分页查询方法及其优化   ---方法1: 直接使用数据库提供的SQL语句---语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N---适 ...

  4. 使用JDBC处理Oracle大数据

    一.Oracle中大数据处理 在Oracle中,LOB(Large Object,大型对象)类型的字段现在用得越来越多了.因为这种类型的字段,容量大(最多能容纳4GB的数据),且一个表中可以有多个这种 ...

  5. 利用jdbc处理oracle大数据---大文件和二进制文件

    一.Oracle中大数据处理 在Oracle中,LOB(Large Object,大型对象)类型的字段现在用得越来越多了.因为这种类型的字段,容量大(最多能容纳4GB的数据),且一个表中可以有多个这种 ...

  6. J2EE综合:如何处理大数据量的查询

    在实际的任何一个系统中,查询都是必不可少的一个功能,而查询设计的好坏又影响到系统的响应时间和性能这两个要害指标,尤其是当数据量变得越来越大时,于是如何处理大数据量的查询成了每个系统架构设计时都必须面对 ...

  7. JavaWeb学习总结(三十五)——使用JDBC处理Oracle大数据

    一.Oracle中大数据处理 在Oracle中,LOB(Large Object,大型对象)类型的字段现在用得越来越多了.因为这种类型的字段,容量大(最多能容纳4GB的数据),且一个表中可以有多个这种 ...

  8. JavaWeb(三十五)——使用JDBC处理Oracle大数据

    一.Oracle中大数据处理 在Oracle中,LOB(Large Object,大型对象)类型的字段现在用得越来越多了.因为这种类型的字段,容量大(最多能容纳4GB的数据),且一个表中可以有多个这种 ...

  9. Oracle 大数据集成实施

    Oracle 大数据实施架构 Oracle为广大客户提供了一个预装的用于测试和学习目的的免费大数据环境.你可以在这个环境中对Oracle大数据一体机(Big Data Appliance)上的可选软件 ...

随机推荐

  1. Linux Shell编程三

    case分支条件语句. case "string" in pattern_1) commands ;; pattern_2) commands ;; *) commands ;; ...

  2. no.5.print sum

    #-*-coding=utf-8-*- for a in range(1,50,1): for b in range(1,50,1): for c in range(1,50,1): if a+b+c ...

  3. mac基本用法

    1.屏幕截图 command + shift + 4 2.切换到桌面 command + f3 3.右击 双支轻拍 4.彻底退出窗口 command + q 5.关闭窗口 cmd + w 6.隐藏窗口 ...

  4. Backbone源码分析-Backbone架构+流程图

    作者:nuysoft/高云/nuysoft@gmail.com 声明:本文为原创文章,如需转载,请注明来源并保留原文链接. Backbone0.9.1源码分析分析系列 jQuery1.6.1源码分析系 ...

  5. LeetCode:Pascal's Triangle I II

    LeetCode:Pascal's Triangle Given numRows, generate the first numRows of Pascal's triangle. For examp ...

  6. app整体搭建环境:tabBar切换不同控制器的封装(自定义导航+自定义uiviewcontroler+系统自带tabbar+自定义tabbarController)

    首先,一个app的搭建环境非常重要.既要实现基本功能,又要考虑后期优化的性能. 现在很多应用不仅仅是系统自带的控制器,由于需求复杂,基本上需要自定义多控制器来管理. 新建一个BasicNavigati ...

  7. 导航栏全透明效果, 只保留左右两个按钮, 如何实现?以及关于NavigationController的小问题

    [self.navigationController.navigationBar setBackgroundImage:[UIImage imageWithColor:[UIColor clearCo ...

  8. Java学习笔记(十五)——javadoc学习笔记和可能的注意细节

    [前面的话] 这次开发项目使用jenkins做持续集成,PMD检查代码,Junit做单元测试,还会自动发邮件通知编译情况,会将javadoc生成的文档自动发到一个专门的服务器上面,每个人都可以看,所以 ...

  9. Android应用程序模拟手机按键

    记得以前在做一个C++项目时,需要在某一步操作之后人为用代码模拟敲键盘上的回车键(Enter)效果. 出于好奇,这几天研究了一下Android中手机(或平板)上各种按键的键值.模拟方法及最终效果. 1 ...

  10. Bootstrap3.0学习第十七轮(JavaScript插件——模态框)

    详情请查看http://aehyok.com/Blog/Detail/24.html 个人网站地址:aehyok.com QQ 技术群号:206058845,验证码为:aehyok 本文文章链接:ht ...