题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4573

Problem Description
  Remember our childhood? A few naked children throw stones standing on the same position, the one throws farther win the game. Aha, of course, there are some naughty boys who care more about whether they can urinate father.
  You believe it or not, anyway, I believed. Nowadays, some of the children are smarter than we were, while others may be more naughty.
  A week ago, I saw several children throw stones. In fact, they are more clever than we were, since the game they played, apparently, is more complex than we did. Maybe you have different points of view, however, you’d better learn about the rules of the game before expressing your views. A group of children take turns to throw stones standing on the same position. After some child throw a stone, the children will draw a convex polyhedron with smallest volume together to enclose all the stones thrown by them. You may assume that the stone is so small as to be abstracted as a point in three-dimensional space. Naively, the children regard the space enclosed by the convex polyhedron as territory under their control. After a child throw his stone, the score he obtains equals the incremental of the volume of their territory.   Unfortunately, the first three child’s score will always be zero. At last, the child with the highest score will win the game, and known as the "King".
  I think you have accepted my opinion already, for the rules of their throwing stones game are really complicated. But, you also don’t need to be frustrated for it. Now, in order to show you are smarter, maybe you can write a program to help the children point out their "King".
 
Input
  Input consists of a number of cases. The data of each case appears on a number of input lines, the first of which contains an integer N. The following N lines contain three number (xi, yi, zi) indicating coordinates of the stone thrown by the i-th child. 
Note: 1 <= N <= 10^4, 1 <= i <= N, -10^4 <= xi , yi , zi <= 10^4.
 
Output
  For each test case, you should output two lines. The first line is "Case #K:", K means the number of the test case. The second line is "i v", i means index of the "King" and v means the score of the "King". If there are more than one "King", output the one throws stone earlier than others.
  Please round the result to 2 digits after decimal point if necessary.
 
题目大意:给一个三维空间点集依次加入N个点,形成一个三维凸包。问加入哪一个点的时候,凸包的体积增量最大,即前 i 个点组成的凸包体积减去前 i - 1个点组成的凸包体积最大。输出这个点,并输出这个增量。
思路:http://blog.csdn.net/catalyst1314/article/details/9017673
PS:我的代码框架几乎都是照着上面写的。但是怎么看内存都会超出限制,虽然不知道为什么实际上没有(我算错了?),虽说现场没有这种限制。然后不知为何说时间复杂度是O(n*sqrt(n)),我怎么觉得最坏情况下还是O(n^2)的……
 
代码(531MS):
 #include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long LL; const int MAXN = ;
const double EPS = 1e-; inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y, z;
Point() {}
Point(double x, double y, double z): x(x), y(y), z(z) {}
void read() {
scanf("%lf%lf%lf", &x, &y, &z);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y, z - rhs.z);
}
double operator * (const Point &rhs) const {
return x * rhs.x + y * rhs.y + z * rhs.z;
}
};
double length(const Point &a) {
return sqrt(a * a);
}
Point cross(const Point &a, const Point &b) {
Point res;
res.x = a.y * b.z - a.z * b.y;
res.y = a.z * b.x - a.x * b.z;
res.z = a.x * b.y - a.y * b.x;
return res;
}
Point cross(const Point &o, const Point &a, const Point &b) {
return cross(a - o, b - o);
}
double volume(const Point &a, const Point &b, const Point &c, const Point &d) {
return cross(c - a , b - a) * (d - a) / ;
}
Point p[MAXN]; struct Face {
int a, b, c;
bool flag;
Face() {}
Face(int a, int b, int c, bool flag): a(a), b(b), c(c), flag(flag) {}
bool can_see(const Point &q) {
return sgn(volume(p[a], p[b], p[c], q)) > ;
}
};
Face fac[MAXN * ]; struct Convex {
double diff_vol;
int cnt, mat[MAXN][MAXN]; void init() {
cnt = ;
for(int i = ; i < ; ++i) {
Face newf = Face((i + ) % , (i + ) % , (i + ) % , true);
if(newf.can_see(p[i])) swap(newf.a, newf.c);
mat[newf.a][newf.b] = mat[newf.b][newf.c] = mat[newf.c][newf.a] = cnt;
fac[cnt++] = newf;
}
} void restore(int k, int a, int b) {
int f = mat[a][b];
if(fac[f].flag) {
if(fac[f].can_see(p[k])) dfs(k, f);
else {
mat[b][a] = mat[a][k] = mat[k][b] = cnt;
fac[cnt++] = Face(b, a, k, true);
}
}
} void dfs(int k, int f) {
diff_vol += volume(p[fac[f].a], p[fac[f].b], p[fac[f].c], p[k]);
fac[f].flag = false;
restore(k, fac[f].b, fac[f].a);
restore(k, fac[f].c, fac[f].b);
restore(k, fac[f].a, fac[f].c);
} double update(int k) {
diff_vol = ;
for(int i = ; i < cnt; ++i) {
if(!fac[i].flag || !fac[i].can_see(p[k])) continue;
dfs(k, i);
break;
}
return diff_vol;
} double vol() {
double res = ;
for(int i = ; i < cnt; ++i) if(fac[i].flag)
res -= volume(p[fac[i].a], p[fac[i].b], p[fac[i].c], Point(, , ));
return res;
}
} solver; int n, kase; void solve() {
int king = ;
double maxans = ;
for(int i = , tmp = ; i < n; ++i) {
if(tmp == ) {
tmp += sgn(length(p[] - p[i]));
if(tmp > ) swap(p[], p[i]);
} else if(tmp == ) {
tmp += sgn(length(cross(p[], p[], p[i])));
if(tmp > ) swap(p[], p[i]);
} else if(tmp == ) {
tmp += (sgn(volume(p[], p[], p[], p[i])) != );
if(tmp > ) {
swap(p[], p[i]);
solver.init();
for(int j = ; j <= i; ++j) solver.update(j);
king = i, maxans = solver.vol();
}
} else {
double v = solver.update(i);
if(sgn(v - maxans) > ) {
maxans = v;
king = i;
}
}
}
printf("%d %.2f\n", king + , maxans);
} int main() {
while(scanf("%d", &n) != EOF) {
for(int i = ; i < n; ++i) p[i].read();
printf("Case #%d:\n", ++kase);
solve();
}
}

HDU 4573 Throw the Stones(动态三维凸包)(2013 ACM-ICPC长沙赛区全国邀请赛)的更多相关文章

  1. HDU 4571 Travel in time ★(2013 ACM/ICPC长沙邀请赛)

    [题意]给定N个点,每个点有一个停留所需的时间Ci,和停留能够获得的满意度Si,有M条边,每条边代表着两个点走动所需的时间ti,现在问在规定的T时间内从指定的一点S到E能够获得的最大的满意度是多少?要 ...

  2. HDU 4568 Hunter(最短路径+DP)(2013 ACM-ICPC长沙赛区全国邀请赛)

    Problem Description One day, a hunter named James went to a mysterious area to find the treasures. J ...

  3. HDU 4747 Mex(线段树)(2013 ACM/ICPC Asia Regional Hangzhou Online)

    Problem Description Mex is a function on a set of integers, which is universally used for impartial ...

  4. HDU 4582 DFS spanning tree(DFS+贪心)(2013ACM-ICPC杭州赛区全国邀请赛)

    Problem Description Consider a Depth-First-Search(DFS) spanning tree T of a undirected connected gra ...

  5. HDU 4569 Special equations(枚举+数论)(2013 ACM-ICPC长沙赛区全国邀请赛)

    Problem Description Let f(x) = anxn +...+ a1x +a0, in which ai (0 <= i <= n) are all known int ...

  6. HDU 4571 Travel in time(最短路径+DP)(2013 ACM-ICPC长沙赛区全国邀请赛)

    Problem Description Bob gets tired of playing games, leaves Alice, and travels to Changsha alone. Yu ...

  7. HDU 4565 So Easy!(数学+矩阵快速幂)(2013 ACM-ICPC长沙赛区全国邀请赛)

    Problem Description A sequence Sn is defined as:Where a, b, n, m are positive integers.┌x┐is the cei ...

  8. HDU 5874 Friends and Enemies 【构造】 (2016 ACM/ICPC Asia Regional Dalian Online)

    Friends and Enemies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  9. HDU 4063 Aircraft(计算几何)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4063 Description You are playing a flying game. In th ...

随机推荐

  1. 读书笔记——《图解TCP/IP》(4/4)

    经典摘抄 第八章 应用层协议概要 1.应用协议是为了实现某种应用而设计和创造的协议. 2.TCP/IP的应用层包含了管理通信连接的会话层功能.转换数据格式的表示层功能,还包括与对端主机交互的应用层功能 ...

  2. php判断爬虫

    function checkrobot($useragent = ''){ static $kw_spiders = 'Bot|Crawl|Spider|slurp|sohu-search|lycos ...

  3. Visual Studio 2005安装qt-win-commercial-src-4.3.1,并设置环境变量

    虽然已经在Visual Studio 2005下安装Qt4已经n次了,还是打算在上写写安装方法. qt-win-commercial-src-4.3.1.zip.qt-vs-integration-1 ...

  4. zepto源码--qsa--学习笔记

    zepto内部选择器qsa方法的实现. 简述实现原理: 通过判断传入的参数类型: 如果是'#id',则使用getElementById(id)来获取元素,并且将结果包装成数组形式: 如果是'.clas ...

  5. php-- memcache 与 memcached支架的区别与共同点 个人整理

    首先声明:memcache 与 memcached 之间没有关系 1.概念相似 MemCache是一个自由.源码开放.高性能.分布式的分布式内存对象缓存系统,用于动态Web应用以减轻数据库的负载. m ...

  6. 美国VPS - DigitalOcean 推荐创业团队使用

    初创公司DigitalOcean在美国正迅速成为一个家喻户晓的公司.每月5美元,该公司就可以让你享受到一个虚拟的私有服务器(或者说droplets,很多公司都这么称呼它).该公司的联合创始人兼首席执行 ...

  7. The Top Five Software Project Risks

    Risk management (or more precisely risk avoidance) is a critical topic, but one that is often dull t ...

  8. JavaScript学习之DIV层与图像

    DIV层与图像 一.设计一个可定位的层 1.设置位置(position)和大小 (1)绝对定位(absolute):以页面边框为参照,只要设置好绝对位置,那么元素的位置会始终固定在距离边框某个位置的距 ...

  9. python笔记 - day7

    python笔记 - day7 参考: http://www.cnblogs.com/wupeiqi/articles/5501365.html 面向对象,初级篇: http://www.cnblog ...

  10. 删除docker私有库镜像

    不断往私库里push image,发现里面大多数镜像已经版本过旧,用不到了,所以决定删除私库里那些没用的镜像. Docker registry默认提供了一个仓库清理的url,如下:可以删除镜像ubun ...