题目链接

给一个n个节点m条边的树, 每条边有权值, 输出m个数, 每个数代表包含这条边的最小生成树的值。

先将最小生成树求出来, 把树边都标记。 然后对标记的边的两个端点, 我们add(u, v), add(v, u)。 对于每一次输出, 如果这条边被标记了, 那么直接输出mst的值。 否则, 加上这条边之后一定会出现一个环, 我们就把环上的最长的那条边删掉。 查询最长的那条边可以用树链剖分。

 #include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <queue>
#include <stack>
#include <bitset>
using namespace std;
#define pb(x) push_back(x)
#define ll long long
#define mk(x, y) make_pair(x, y)
#define lson l, m, rt<<1
#define mem(a) memset(a, 0, sizeof(a))
#define rson m+1, r, rt<<1|1
#define mem1(a) memset(a, -1, sizeof(a))
#define mem2(a) memset(a, 0x3f, sizeof(a))
#define rep(i, n, a) for(int i = a; i<n; i++)
#define fi first
#define se second
typedef pair<int, int> pll;
const double PI = acos(-1.0);
const double eps = 1e-;
const int mod = 1e9+;
const int inf = ;
const int dir[][] = { {-, }, {, }, {, -}, {, } };
const int maxn = 2e5+;
int head[maxn*], son[maxn], sz[maxn], deep[maxn], top[maxn], w[maxn], f[maxn], cnt, num;
int maxx[maxn<<], fa[maxn];
struct node
{
int to, nextt;
}e[maxn*];
struct ed
{
int u, v, id, val, mark;
ed(){}
ed(int u, int v, int val, int id, int mark = ):u(u), v(v), val(val), id(id), mark(mark){}
}edge[maxn];
bool cmp1(ed a, ed b) {
return a.id<b.id;
}
bool cmp2(ed a, ed b) {
if(a.val == b.val)
return a.id<b.id;
return a.val<b.val;
}
void init() {
mem1(head);
num = cnt = ;
}
void add(int u, int v, int w) {
e[num].to = v, e[num].nextt = head[u], head[u] = num++;
}
void dfs1(int u, int fa) {
sz[u] = ;
deep[u] = deep[fa]+;
son[u] = -;
f[u] = fa;
for(int i = head[u]; ~i; i = e[i].nextt) {
int v = e[i].to;
if(v == fa)
continue;
dfs1(v, u);
sz[u] += sz[v];
if(son[u]==-||sz[v]>sz[son[u]])
son[u] = v;
}
}
void dfs2(int u, int tp) {
w[u] = ++cnt, top[u] = tp;
if(~son[u])
dfs2(son[u], tp);
for(int i = head[u]; ~i; i = e[i].nextt) {
int v = e[i].to;
if(v == f[u]||v == son[u])
continue;
dfs2(v, v);
}
}
void pushUp(int rt) {
maxx[rt] = max(maxx[rt<<], maxx[rt<<|]);
}
void update(int p, int val, int l, int r, int rt) {
if(l == r) {
maxx[rt] = val;
return ;
}
int m = l+r>>;
if(p<=m)
update(p, val, lson);
else
update(p, val, rson);
pushUp(rt);
}
int query(int L, int R, int l, int r, int rt) {
if(L<=l&&R>=r) {
return maxx[rt];
}
int m = l+r>>, ret = ;
if(L<=m)
ret = max(ret, query(L, R, lson));
if(R>m)
ret = max(ret, query(L, R, rson));
return ret;
}
int find(int u, int v) {
int f1 = top[u], f2 = top[v], ret = ;
while(f1 != f2) {
if(deep[f1]<deep[f2]) {
swap(f1, f2);
swap(u, v);
}
ret = max(ret, query(w[f1], w[u], , cnt, ));
u = f[f1];
f1 = top[u];
}
if(u == v)
return ret;
if(deep[u]>deep[v])
swap(u, v);
return max(ret, query(w[son[u]], w[v], , cnt, ));
}
int findd(int u) {
return fa[u] == u?u:fa[u] = findd(fa[u]);
}
int main()
{
int t, n, u, v, val, m;
while(~scanf("%d%d", &n, &m)) {
init();
ll mst = ;
deep[] = ;
for(int i = ; i<=m; i++) {
scanf("%d%d%d", &u, &v, &val);
edge[i] = ed(u, v, val, i);
}
for(int i = ; i<=n; i++)
fa[i] = i;
sort(edge+, edge++m, cmp2);
for(int i = ; i<=m; i++) {
u = findd(edge[i].u);
v = findd(edge[i].v);
if(u == v)
continue;
edge[i].mark = ;
fa[v] = u;
mst += edge[i].val;
}
for(int i = ; i<=m; i++) {
if(edge[i].mark) {
add(edge[i].u, edge[i].v, edge[i].val);
add(edge[i].v, edge[i].u, edge[i].val);
}
}
dfs1(, );
dfs2(, );
for(int i = ; i<=m; i++) {
if(deep[edge[i].u]>deep[edge[i].v]) {
swap(edge[i].u, edge[i].v);
}
if(edge[i].mark)
update(w[edge[i].v], edge[i].val, , cnt, );
}
sort(edge+, edge++m, cmp1);
for(int i = ; i<=m; i++) {
if(edge[i].mark) {
printf("%I64d\n", mst);
} else {
int tmp = find(edge[i].u, edge[i].v);
printf("%I64d\n", mst-tmp+edge[i].val);
}
}
}
return ;
}

codeforces 609E. Minimum spanning tree for each edge 树链剖分的更多相关文章

  1. [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]

    这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...

  2. codeforces 609E Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  3. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  4. Educational Codeforces Round 3 E (609E) Minimum spanning tree for each edge

    题意:一个无向图联通中,求包含每条边的最小生成树的值(无自环,无重边) 分析:求出这个图的最小生成树,用最小生成树上的边建图 对于每条边,不外乎两种情况 1:该边就是最小生成树上的边,那么答案显然 2 ...

  5. cf 609E.Minimum spanning tree for each edge

    最小生成树,lca(树链剖分(太难搞,不会写)) 问存在这条边的最小生成树,2种情况.1.这条边在原始最小生成树上.2.加上这条半形成一个环(加上),那么就找原来这条边2端点间的最大边就好(减去).( ...

  6. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  7. Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST

    E. Minimum spanning tree for each edge   Connected undirected weighted graph without self-loops and ...

  8. CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  9. Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

随机推荐

  1. JQuery打造下拉框联动效果

    做联动效果,若是用纯JavaScript来做,往往须要辅助页面保存须要刷新的结果集,然后渲染到原页面.考虑将须要动态刷新的内容自己主动拼接到前一个下拉框之后,当前一个下拉框onchange后,同级的后 ...

  2. BadUSB的防范研究

    近期爆出的badUSB漏洞,通过将病毒植入固件,能够伪装成键盘等设备,直接控制电脑,业界还没有非常好的修复方法. 从安全产品的角度.对于这个问题的防范,有下面几点可能不成熟的想法 1.病毒伪装成键盘. ...

  3. B树、B-树、B+树、B*树都是什么(转)

    B树        即二叉搜索树:        1.所有非叶子结点至多拥有两个儿子(Left和Right):        2.所有结点存储一个关键字:        3.非叶子结点的左指针指向小于 ...

  4. 利用CSS3的transform 3D制作的立方体旋转效果

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  5. [转]spring 监听器 IntrospectorCleanupListener简介

    "在服务器运行过程中,Spring不停的运行的计划任务和OpenSessionInViewFilter,使得Tomcat反复加载对象而产生框架并用时可能产生的内存泄漏,则使用Introspe ...

  6. JS操作JSON的方法总结

    JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,采用完全独立于语言的文本格式,是理想的数据交换格式.同时,JSON是 JavaScript 原生格式,这意 ...

  7. 电脑技巧---完全控制面板---上帝模式(God Mode)

    简介 上帝模式,即"God Mode”,或称为“完全控制面板”.是Windows 系统中隐藏的一个简单的文件夹窗口,但包含了几乎所有Windows系统的设置,如控制面板的功能.界面个性化.辅 ...

  8. [vc]如何对radio按钮分组

    如何使用多组? 多组和一组是一样的使用,只要搞清楚哪个是哪一组的就行了.再为对话框添加Radio3和Radio4.很简单,先为这些RadioButton排个顺序,就是排列他们的TABORDER.在对话 ...

  9. html mysql special character

    function html_encode(str) { var s = ""; if (str.length == 0) return ""; s = str. ...

  10. Performance tool httperf

    httperf: A relatively well-known open source utility developed by HP, for Linux operating systems on ...