Necklace of Beads
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 7451   Accepted: 3102

Description

Beads of red, blue or green colors are connected together into a circular necklace of n beads ( n < 24 ). If the repetitions that are produced by rotation around the center of the circular necklace or reflection to the axis of symmetry are all neglected, how many different forms of the necklace are there? 

Input

The input has several lines, and each line contains the input data n.  -1 denotes the end of the input file. 

Output

The output should contain the output data: Number of different forms, in each line correspondent to the input data.

Sample Input

4
5
-1

Sample Output

21
39
题解:给出红,绿,蓝3种颜色 的n个珠子,求能够组成多少个不同的项链。 (旋转 和 翻转后 相同的属于同一个项链)
看了好久大神的代码还是不太理解;暂时的理解是,对于每个循环节里的元素都有k中染色方案,所以是k^c(f);
现在只需要找出所有循环节的种数就好了;当然翻转和旋转循环节是不同的,翻转和旋转均有n种;所有种数加完要除以2n

Polya定理:

(1)设G是p个对象的一个置换群,用k种颜色给这p个对象,若一种染色方案在群G的作用下变为另一种方案,则这两个方案当作是同一种方案,这样的不同染色方案数为

(2)对于N个珠子的项链,共有n种旋转置换和n种翻转置换。

对于旋转置换:每种置换的循环节数c(fi) = gcd(n,i),(i为一次转过多少个珠子)

对于翻转置换:如果n为奇数,共有n种翻转置换,每种置换的循环节数均为c(f) = n/2 + 1;              如果n为偶数,分两种情况 <1> 从空白处穿对称轴,则轴两边各有n/2个对象,得到c(f) = n/2;

<2> 从两个对象上穿对称轴,则轴两边各有n/2-2个对象,得到c(f) = n/2 + 1。

代码:

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
#define mem(x,y) memset(x,y,sizeof(x))
#define SI(x) scanf("%d",&x)
#define PI(x) printf("%d",x)
typedef long long LL;
int gcd(int a,int b){return b==?a:gcd(b,a%b);}
int main(){
int n;
while(~SI(n),n!=-){
LL ans=;
if(!n){
puts("");continue;
}
for(int i=;i<=n;i++)
ans+=pow(,gcd(i,n));
ans+=n*(n&?pow(,n/+):(pow(,n/)/+pow(,n/+)/));
printf("%lld\n",ans/(*n));
}
return ;
}

Necklace of Beads(polya计数)的更多相关文章

  1. hdu 1817 Necklace of Beads (polya)

    Necklace of Beads Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  2. poj 1286 Necklace of Beads (polya(旋转+翻转)+模板)

      Description Beads of red, blue or green colors are connected together into a circular necklace of ...

  3. POJ1286 Necklace of Beads(Polya定理)

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9359   Accepted: 3862 Description Beads ...

  4. poj1286 Necklace of Beads—— Polya定理

    题目:http://poj.org/problem?id=1286 真·Polya定理模板题: 写完以后感觉理解更深刻了呢. 代码如下: #include<iostream> #inclu ...

  5. Necklace of Beads(polya定理)

    http://poj.org/problem?id=1286 题意:求用3种颜色给n个珠子涂色的方案数.polya定理模板题. #include <stdio.h> #include &l ...

  6. HDU 1817Necklace of Beads(置换+Polya计数)

    Necklace of Beads Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  7. POJ 1286 Necklace of Beads(Polya简单应用)

    Necklace of Beads 大意:3种颜色的珠子,n个串在一起,旋转变换跟反转变换假设同样就算是同一种,问会有多少种不同的组合. 思路:正规学Polya的第一道题,在楠神的带领下,理解的还算挺 ...

  8. hdu 1817 Necklace of Beads(Polya定理)

    Necklace of Beads Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  9. 数学计数原理(Pólya):POJ 1286 Necklace of Beads

    Necklace of Beads Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7763   Accepted: 3247 ...

随机推荐

  1. thecorner.com.cn - Customer Care

    thecorner.com.cn - Customer Care 所有主题 帮助 关于我们 thecorner.com 是通过专业的"迷你商店"形式荟萃最新男士.女士精选时尚商品和 ...

  2. mysql root@::1 意义

    root@::1 ::1 是IPv6格式的 127.0.0.1

  3. 安装 SQL Server 2008 R2 的硬件和软件要求(转)

    以下各部分列出了安装和运行 SQL Server 2008 R2 的最低硬件和软件要求.有关 SharePoint 集成模式下的 Analysis Services 的要求的详细信息,请参阅硬件和软件 ...

  4. Javascript base64加密 解密

    var base64encodechars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" ...

  5. Java中的import

    有些人写了一阵子 Java,可是对于 Java的 package 跟 import 还是不太了解.很多人以为原始码 .java 文件中的 import 会让编译器把所 import 的程序通通写到编译 ...

  6. Web服务器压力测试一例

    近期部门新上线一个服务,我们使用ab和locust分别测试 目前项目属于demo阶段,对访问量的支持不要求太高,我们暂且设定在500请求,20并发 工具介绍 ab ab全称为:Apache HTTP ...

  7. 查询本天气预报Web Services支持的国内外城市或地区信息

    原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://zhangkui.blog.51cto.com/1796259/497324 本文 ...

  8. HDOJ3374 String Problem 【KMP】+【最小表示法】

    String Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  9. iOS 键盘挡住UITextField

    iOS经常使用的两个功能:点击屏幕和return隐藏虚拟键盘和解决虚拟键盘挡住UITextField的方法 iOS上面对键盘的处理非常不人性化,所以这些功能都须要自己来实现,  首先是点击return ...

  10. 子级Repeater获取 父级Repeater

    第一种方法,子级Repeater中绑定父级的某个字段: <%# DataBinder.Eval((Container.NamingContainer.NamingContainer as Rep ...