Modular Inverse(模逆元,扩展欧几里德)
Modular Inverse
Time Limit: 2 Seconds Memory Limit: 65536 KB
The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m)
. This is equivalent to ax≡1 (mod m)
.
Input
There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.
Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.
Output
For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".
Sample Input
3
3 11
4 12
5 13
Sample Output
4
Not Exist
8
题解:求最小正整数解,其实吧,x的通解是x0+b/gcd*t,由于t是整数,那么ans=x0+b/gcd*t=x0 mod b=x0%b;因为ans要是正整数的,
所以当b/gcd是负的时候,就等于绝对值就好了,因为还有t啊,当x0%b负时,加上一个b;就妥了;因为ans=(x0+b)%b;
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int INF=0x3f3f3f3f;
typedef long long LL;
void e_gcd(LL a,LL b,LL &d,LL &x,LL &y){
if(!b){
d=a;
x=;
y=;
}
else{
e_gcd(b,a%b,d,x,y);
LL temp=x;
x=y;
y=temp-a/b*y;
}
}
LL cal(int a,int b,int c){
LL x,y,d;
e_gcd(a,b,d,x,y);
if(c%d!=)return -;//ax+by=c/(c/gcd);
x*=c/d;
b/=d;//因为x的通解是x0+(b/gcd)t;
if(b<)b=-b;
LL ans=x%b;
if(ans<=)ans+=b;
return ans;
}
int main(){
LL T,a,b,d,x,y;
scanf("%d",&T);
while(T--){
scanf("%lld%lld",&a,&b);
LL ans=cal(a,b,);
if(ans==-)puts("Not Exist");
else printf("%lld\n",ans);
}
return ;
}
题上数据比较水,数据范围1000,暴力一下就可以了:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int INF=0x3f3f3f3f;
typedef long long LL;
int main(){
int T,a,m;
scanf("%d",&T);
while(T--){//(1-ax)%m;
scanf("%d%d",&a,&m);
int flot=;
for(int x=;x<=;x++){
if((-a*x)%m==){
flot=;
printf("%d\n",x);
break;
}
}
if(flot)continue;
puts("Not Exist");
}
return ;
}
Modular Inverse(模逆元,扩展欧几里德)的更多相关文章
- 51Nod 1256 求乘法逆元--扩展欧几里德
#include<stdio.h> int exgcd(int a,int b,int &x,int &y) { ) { x=; y=; return a; } int r ...
- ZOJ 3609 Modular Inverse(拓展欧几里得求最小逆元)
Modular Inverse Time Limit: 2 Seconds Memory Limit: 65536 KB The modular modular multiplicative ...
- CodeForces 146E - Lucky Subsequence DP+扩展欧几里德求逆元
题意: 一个数只含有4,7就是lucky数...现在有一串长度为n的数...问这列数有多少个长度为k子串..这些子串不含两个相同的lucky数... 子串的定义..是从这列数中选出的数..只要序号不同 ...
- POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))
d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...
- Modular Inverse(zoj3609+欧几里德)
Modular Inverse Time Limit: 2 Seconds Memory Limit: 65536 KB The modular modular multiplicative ...
- HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))
Invoker Time Limit : 2000/1000ms (Java/Other) Memory Limit : 122768/62768K (Java/Other) Total Subm ...
- 公钥密码之RSA密码算法扩展欧几里德求逆元!!
扩展欧几里得求逆元 实话说这个算法如果手推的话问题不大,无非就是辗转相除法的逆过程,还有一种就是利用扩展欧几里德算法,学信安数学基础的时候问题不大,但现在几乎都忘了,刷题的时候也是用kuangbin博 ...
- POJ-1061青蛙的约会,扩展欧几里德求逆元!
青蛙的约会 以前不止一次看过这个题,但都没有去补..好吧,现在慢慢来做. 友情提示 ...
- 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...
随机推荐
- C# 后台调用前台JS
1.需要添加微软的类库 Interop.MSScriptControl.dll 2. var path = Path.GetFullPath("../../javascript/youzi ...
- Java动态代理机制——JDK
动态代理机制是Spring AOP编程的原理基础. JDK的动态代理机制有个限制就是它只能代理实现了一个或多个接口的类.如PersonImpl得实现Person接口,才能用JDK动态代理机制. 定义一 ...
- iOS 相关职位要求整理版
在拉勾上找了20家,BOSS直聘找了10家感兴趣的在招聘 iOS 程序员的公司,把职位要求整理了一下. 初创公司一般要求1年以上开发经验,成长型或者成熟型公司一般要求最低2年以上开发经验.这里针对的是 ...
- float 浮点数与零值0比较大小
float x: 千万不要写x==0; 写出float x 与“零值”比较的if语句——一道面试题分析 写出float x 与“零值”比较的if语句 请写出 float x 与“零值”比较的 if ...
- Dialog with HTML skin using CDHtmlDialog and SetWindowRgn
Introduction This program demonstrates how to use CDHtmlDialog and SetWindowRgn functions to give a ...
- Java 根据comboBox选择结果显示JTable
处理这样的问题的主要思路是: 对于JTable,JTree等Swing控件,都有一个对应的Model用来存储数据,JTable对应的有一个DefaultTableModel. Defa ...
- Codeforces Round #242 (Div. 2) <A-D>
CF424 A. Squats 题目意思: 有n(n为偶数)个x和X,求最少的变换次数,使得X的个数为n/2,输出变换后的序列. 解题思路: 统计X的个数ans,和n/2比較,少了的话,须要把n/2- ...
- Foundation 框架 归档
一.使用XML属性列表归档 此方法适用于NSString.NSDictionary.NSarray.NSDate.NSnumber,其中atomically参数表示先将字典写入临时备份文件,成功之后, ...
- JavaSE学习总结第27天_反射 & 设计模式 & JDK5、7、8新特性
27.01 反射_类的加载概述和加载时机 类的加载:当程序要使用某个类时,如果该类还未被加载到内存中,则系统会通过加载,连接,初始化三步来实现对这个类进行初始化. 加载:就是指将class文件读 ...
- activemq demo指南
queue与topic的技术特点对比 topic queue 概要 Publish Subscribe messaging 发布订阅消息 Point-to-Point 点对点 有无状态 topic ...