Light OJ 1067 Combinations (乘法逆元)
Description
Given n different objects, you want to take k of them. How many ways to can do it?
For example, say there are 4 items; you want to take 2 of them. So, you can do it 6 ways.
Take 1, 2
Take 1, 3
Take 1, 4
Take 2, 3
Take 2, 4
Take 3, 4
Input
Input starts with an integer T (≤ 2000), denoting the number of test cases.
Each test case contains two integers n (1 ≤ n ≤ 106), k (0 ≤ k ≤ n).
Output
For each case, output the case number and the desired value. Since the result can be very large, you have to print the result modulo 1000003.
Sample Input
3
4 2
5 0
6 4
Sample Output
Case 1: 6
Case 2: 1
Case 3: 15
知识点:乘法逆元,扩展欧几里得。
题意:求C(n,m)%mod
难点:理解乘法逆元。
扩展:乘法逆元定义:如果a*b=1(mod n),那么b就是a关于模n的乘法逆元,此时,也可称作a与b互为乘法逆元。
思路:1.C(n,m)%mod=n!/m!*(n-m)!%mod除以一个数并取模等价于乘以这个数的逆元然后再去模.可将n!/m!*(n-m)!%mod等价于n!/m!%mod*1/(n-m)!%mod.再等价于n!*inv[m!]%mod(m!的逆元)*inv[(n-m)!]((n-m!)的逆元).
2.也就是说,求出逆元即可求解。c*x=1(mod n)=1-k*n等价于c*x+k*n=1所以可以用扩展欧几里得算法求得x(逆元)的值。为了保证x是正整数,通常需要加上:x=(x%n+n)%n.
#include<cstdlib>
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define m 1000003
long long f[];
long long inv[];
long long x,y,gcd;
void extend_gcd(long long a, long long b)
{
if(b == )
{
x = ;
y = ;
gcd = a;
}
else {
extend_gcd(b, a%b);
long long temp = x;
x = y;
y = temp - a/b*y;
}
}
void factorial()
{
f[]=;inv[]=;
for(int i=;i<=;i++)
{
f[i]=f[i-]*i%m;
extend_gcd(f[i],m);
inv[i]=(x%m+m)%m;
}
}
int main()
{
factorial();
int t;
int cnt=;
scanf("%d\n",&t);
int a1,b1;
while(t--)
{
scanf("%d%d",&a1,&b1);
long long ans=f[a1]*inv[b1]%m*inv[a1-b1]%m;
printf("Case %d: %lld\n",++cnt,ans); } return ;
}
//3
//
//4 2
//
//5 0
//
//6 4 //3
//1 1
//2 3
//4 3
Light OJ 1067 Combinations (乘法逆元)的更多相关文章
- light oj 1067 费马小定理求逆元
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1067 1067 - Combinations Given n differen ...
- (light oj 1102) Problem Makes Problem (组合数 + 乘法逆元)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1102 As I am fond of making easier problems, ...
- BZOJ 4517--[Sdoi2016]排列计数(乘法逆元)
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1727 Solved: 1067 Description ...
- 1067 - Combinations
1067 - Combinations PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB Giv ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- 51nod1256(乘法逆元)
题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1256 题意:中文题诶~ 思路: M, N 互质, 求满足 K ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- HDU 5651 计算回文串个数问题(有重复的全排列、乘法逆元、费马小定理)
原题: http://acm.hdu.edu.cn/showproblem.php?pid=5651 很容易看出来的是,如果一个字符串中,多于一个字母出现奇数次,则该字符串无法形成回文串,因为不能删减 ...
- Codeforces 543D Road Improvement(树形DP + 乘法逆元)
题目大概说给一棵树,树的边一开始都是损坏的,要修复一些边,修复完后要满足各个点到根的路径上最多只有一条坏的边,现在以各个点为根分别求出修复边的方案数,其结果模1000000007. 不难联想到这题和H ...
随机推荐
- 《Java程序员面试笔试宝典》之字符串创建与存储的机制是什么
在Java语言中,字符串起着非常重要的作用,字符串的声明与初始化主要有如下两种情况: (1) 对于String s1=new String("abc")语句与Strin ...
- js 写table 函数
//创建 table函数 function table(row,col,b,w) { document.write('<table border='+b+'>'); for(var i=0 ...
- bootstrap 导航布局
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...
- [ES7] Object.observe + Microtasks
ES6: If you know about the Javascirpt's event loop. You know that any asyns opreations will be throw ...
- CBitmap,HBitmap,Bitmap区别及联系
加载一位图,可以使用LoadImage: HANDLE LoadImage(HINSTANCE hinst,LPCTSTR lpszName,UINT uType,int cxDesired,int ...
- JSTL学习笔记(核心标签)
一.JSTL标签分类: 核心标签 格式化标签 SQL标签 XML标签 JSTL函数 二.核心标签 引用方式:<%@ taglib prefix="c" uri=& ...
- [core Java学习笔记][第一二三章基本语法]
基本语法 1 Java 简单的类型 1.1 一些常量 正无穷大 Double.POSITVE_INFINITY 负无穷大 Double.NEGATIVE_INFINITY 不存在 Double.NaN ...
- border-radius实例1
简单参数设置一 1.html <div class="paddingBig"> <div class="divSmall radiusOne" ...
- hadoop启动守护进程报JAVA_HOME is not set and could not be found
hadoop启动守护进程 sbin/start-dfs.sh 报如下错误:JAVA_HOME is not set and could not be found 解决办法(JAVA_HOME修改为具体 ...
- WP8.1 页面导航 缓存问题
最近开始学习wp8.1开发,在页面的导航学习时发现了一点问题,即当使用Frame.Navigate()方法进行页面的跳转时,每次都会重新实例化一个页面.而在新的页面采用Frame.GoBack()或者 ...