题目

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAagAAAC5CAYAAAB9T6tKAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA8VSURBVHhe7d2Lctw6DkXReH68y19+J5jyuYMg4EsPCm3vVcUSRZEEKdtCuuOkP/757RcAAMX85+sIAEApJCgAQEklEtTHx8dX7RgbvzrH2ZhXW1mP+vbGZNdGMfx1q7dKlLXtcEfcp/YC4G8l/g7KHgpaxugBkfXzW2iNj9v0MUdGa8qM9nN2PX7+bFzWPopx9Lpvt3rPbD+vFbNlpX/s6/cC4FnlElTUurbSPtNm55kshmnFz/i+M2sZGfVvXbf2yPcbjYvX1N8fjfrF+eL5Ua15RvP761nfq9YH4Bp/JSj7IfXu/IGNsczsQ2OlXW1ZPKNrrXGZ3rXI943jWnFX+fkju9aKo2uRny+O8/zY1vxXas05E8v3if3vWCuAc/74Oyj9kPpibXdRjFi/y+54I/GBKVpbq2R9vNg+evj6vivjjB9nbIxKPFfbUTbe4sQ5reh6bJthff367/L5+flVAzDjrX+Lzz+M7nywjByNPXr4X+VIHO3J319f/DVft1iKp7ovZ/jxcU5/rrZZq/0B7FEqQelhN+vMQ+lKFjtbux7avbqxely/+vhyVm8OXdPR39NYl9imo83h60+zNfj9ZXVjdb+/s3jFBJzTTVD+h/duVz8cWu6KY3PG+2VtitWqt9bT6j/D5lTxbI7YFvk+dlyJ6/n4vu6pvVdaYh9/rjbx969VtzGqX4HkBJzX/SUJu3T1D64XY2Va8VfafdtMXbI2WenfihP7z86ZtcloTn+uejxK1rdVj2Ol1X5GnDOLMWpr1U02dkUrOb1er68agBnDXzM/+8M6oxejdc23W93YedY/tuk8zjEa5/WuRaM4srKG2faVeP589prqsb+02s+Ic2YxRm29dfWuzVKSIikBx/31W3xe6wfV2mPfJ2gdtsaVdVpfjavizHqyPZ4R17KyNuvrS2y7SpzTn6vtCBt7xfcFiQk4749XUPEHu/WDqn5X/CCb3kOhdW213VMf39fqmdZcM3EkxonjenPFdfl+GtebfzT3qO+oTXU7mpnxZ4zWI6O22TEAnvPHKyj74fSlZXR9h6Px/UPIjnYu2pfKFUYPvdaDUsW01mTn6uPF8UfZ+BizZ6XvbqO9rO4VwP0e/a+O/AM0LqN3raf3oLnyITQzV9bHt121nt6crTWYrL01j4njsj5Rb54VNsdsPOmt07fNzAtgv0cTFAAALW/9P0kAAL4vEhQAoCQSFACgJBIUAKAkEhQAoCQSFACgJBIUAKAkEhQAoCQSFACgJBIUAKAkEhQAoCQS1CL/n5ECAO5DgppkiWklObU+9hsAMIcENcn+03f+43cA2IcEdRFeMQHAtUhQFyA5AcD1+MDCRfHTV1vJ6fV6fdUAAEeQoBZlHw+uJEVSAoDr8BbfBUhMAHA9XkFNyn7FnFsHAPchQQEASuItPgBASSQoAEBJJCgAQEkkKABASSQoAEBJJCgAQEkkKABASSQoAEBJJCgAQEkkKABASSQoAEBJJCgAQEkkKABASSQoAEBJJKhF2edC3Wl3PACoggQ1yRLFzmSxGk8fOw8A3wUJapJ9ruPOz3bcHQ8AqiFBvSleMQH47khQb4jkBOAn+PiH95GW2N8L7bxlMV4rOb1er68aAHwPJKhFTycooyRFUgLwnfEW3xsiMQH4CXgFNSn7le87b93ueABQDQkKAFASb/EBAEoiQQEASiJBAQBKIkEBAEoiQQEASiJBAQBKIkEBAEoiQQEASiJBAQBKIkEBAEoiQQEASiJBAQBKIkEBAEoiQQEASiJBLco+p+kuFktll52xAKCHBDXpiURhH9Wlcnfs1f3pY+cB4C4kqElKFN/Vd98fgPdDgiqqWrLgFROA3UhQb0Bv9z2F5ATgCR+/H3y8r7Ngd7J4Ol4rOb1er68aANyDBLVoZ8J44pVTFlNJiqQEYCfe4isqJgo7fwqJCcATeAU1KUsQd9667x4PAEZIUACAkniLDwBQEgkKAFASCQoAUBIJCgBQEgkKAFASCQoAUBIJCgBQEgkKAFASCQoAUBIJCgBQEgkKAFASCQoAUBIJCgBQEgkKAFASCWrRzg8OtFgqO+yOZ3bGAvBeSFCTnnhw20d1qdwd+4l4KzH0sfMAfg4S1CQ9uHEN7ieAERJUUXp465XG3Q/z3fFGeMUEgARVnCUKKytvh52xO16G5ATAfPx+GPE+y4KnXl3sjrsrXozTSk6v1+urBuCnIEEteurBfXfc3fEki6MkRVICfjbe4kM5JCYAhldQk+xP+tHdt87H3PVqRnbuTfhWBOCRoAAAJfEWHwCgJBIUAKAkEhQAoCQSFACgJBIUAKAkEhQAoCQSFACgJBIUAKAkEhQAoCQSFACgJBIUAKAkEhQAoCQSFACgJBLUG8g+muI7+e77A3AMCWrRd36Y2t58+Y6+89cP+G5IUJOeemjvimlx7KPBVHbZub+VWPrYeQDPIUFN2v3gNkoad8viPBX3LhZnVywA1yBBFbXz4S0WU+VuT+yvh1dMQD0kKPyPEobKjiRVBckJqOnj98OI9z0W7PiTf4xxd8xs/jtj7t6fF2O1ktPr9fqqAXgKCWrRroepxYnuipvt6e597tyfl+1LSYqkBNTCW3xF2UNUReffSaX9kZiAmngFNenJP/HLnfHi/nZ9Wzy1P8O3PlAbCQoAUBJv8QEASiJBAQBKIkEBAEoiQQEASiJBAQBKIkEBAEoiQQEASiJBAQBKIkEBAEoiQQEASiJBAQBKIkEBAEoiQQEASiJBAQBK4uM2FtnnCu24ZU99flFrf1rP1WvYFa/a/QQwxiuoSfagyR5yd7IHmy936u1PD1krV92D3fGM5lS5U29/GX3sPID/I0FN2vFQe1Jrf0oWYvUrksbueLu19gdgHgmqMHswq+C8SveTV0zAGAmqMP0p/F1fRVRT5X6SnIA5/JLEInuwPXHLdsWNcbK4V65ldzy5Y85MjNNKTq/X66sGQEhQi556sFWKe+VadsWbiXOHLI6SFEkJ6OMtPnTZw9UesnL3g313vCeQmIA5vIKa5B+acvet8zF3xhIfU9evWsfueKbS/QQwRoICAJTEW3z49fH555/2q58D+BlIUPj1z+uff5OAHSufA/g5eIsP/1IykGrnAH4WEhQAoCTe4gMAlESCAgCURIICAJREggIAlESCAgCURIICAJREggIAlPRogsr+Q03pXcvM9h/1W4074445e7J4d69hdX7rP1uirM202q8S578q3t3rHsniq220ttb13rjRnCM2/uwcM7IYahvFb13vjRvNOeOKOSop+QrKbrL9++EjX2Qv6zea9+p/txzntPOsvDNb/+oerb/GqO6Lb39H2f6tzMjGtcrd7P7HOK24R9ejvcTi+fYK3xdV7kuUrWtGjOHLkx77nyTixrUMa/dLiufmSJvVV8X5VmVr2mH2/lzh7Lyt8b15d+5PVte5ssbYPju2Nd8KP4fqM/PGvnFMaw7f3hprZsYbO8/4GLPivH4Oq8fYmdg3jmnN4dtbY03st0rzeq1YptW+y2OvoLRpO6qe3Qw7P/KFiBRnpUStdVh7vOb3csX6n1Zhj34Nvh7tWMtZ1deo+xuLrvWOYucqd/I/s/p+lHitV2b4Pfmia72j2LnKWdk+WkX8uW+XK9Z1lccSlN0Ef3N0ri+cL2o/K86rEsW2Vj9j7ba+uEa/t3dXZY+Kp7WI1idW9+s8K87v9WJZuy/VaE1an9+L1bVn1eO559s0l859u47qM0P94/i7xDi2TrXFfWXnnm/TXDr37Tqqz4zYT/NIPJ+dd5fPz8+vWtvjfwelm+i/aLGo3dMXU6XVFmVzm1Z/E/uKjfHtVo/z+D5W75WKbF2V96g5szg6nmFz+P1nsntibRqnus5naB8qrbYz4rpsztk1+r52nFmPYmUxtCcVL45rzXGVGM/WMxvP97Vj3EtGsbIYuh8qPbPx3kmJ3+LzR188f+6/oCq99qfEPWRri+fv5sge9fXVWH/eam/xc8dylsW1efw6smLU7yp+H1ZabSauZ6Z4dt6aM9aN+nt2rn6qt7TG+5LpzXkHrdOvx9q0Dl836u/Zufqp3tIa70vGz9nq42k9qu8y84opevTvoHQz/U317ebqG6gvjspdbG6/j10U1+8ta7vC0T3aGJV43mo3q/FW+mY03q9Bdd8mOrd1qsRztV0prmmmiK3Hn4vvF8eoHsfGfplWvBV33MPone6LjVu5J349R2OuOpKczOOfB+W/MPEmW7uux2M00571yeadmcv05pPWXKZ37Sg/p+rxuCIbE9t6845itq7PtKtux0wv7hHZmlrrlHjdr1ntWZ9ZvdgjWZzR2kxrfXEP2VxR7COxLc4Xj17WtsLGRzFWK27G99O4OFcU+0jWlpnpF9cwqnvWbkYxTCs5vV6vr1pbiQRlbBnZjWkdo5n2rE8278xcpjeftOYyvWvGrpten8jPqXo8rsjGxLbevKOYreujOY2uZ31785rW3D0rcSRe17lvb/XxZtuuYPNmevHjWnQ+s8aZeK35svlnYh4xs07j47fWO7PGUbzW9Z5sLd7M+vy1Xj9PSWomKXmP/hafFeM36NvvoPmviKMvpFh95ot1lxhf61NbXO+MOObKPR6d66r4K46stTfmiT2ssPVpjb4u/nsiY/1X7pliqHijeey6L3fy62uttcf6W584rkUxVLx4TUXXdIzXvLvvl6wmJin3Fl+st47RTHvWZ6bNzqPsepzHZPNL75rM9JGsb2xbmc+zcSYb25vzzmvx6B2dO3N0rtl1+bbWfLNzHWVzGZtvZj3ix0W9sa140hob21fGHmFzGZvPzzuK4cdFvbGteDIT119vzWF6c7fq0prjao//mvlIdgPs5sTSaz/L1hCLl7VdwdY/O2/WN2uz8yP3xcbNrmXGyt681jhr96WlNb5ltb8cHbeT7pXW6terdl/XuejcxmXXYrvVVWK8o7I51ObjzZY4Lq6z1c/TuY3LrsV2q6vEeLP8eC9bQxYjG9uTzXGHkq+gdEN93RxZaja/6tJrO8vHlJk42bgVo/Fn5/dW9zgTuzVnNm6270xcr9ffrpmV9RjfrjZj7b14Xhx3tdE6sr0YjYvje/NprpZWjCeMYmsvrTXH8b35NFeLxrViRqNY2TW/htH8d3k8QQEA8Ldfv/4LqIUT0xD+XHwAAAAASUVORK5CYII=" alt="" />

解决代码及点评


/************************************************************************/
/*
9. 打印如下形式的杨辉三角形
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
输出前10行,从 0行开始,分别用一维数组和二维数组实现 */
/************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h> void main()
{
int arr[10][10]={0};
for (int i=0;i<10;i++)//赋值,杨辉三角主要是需要我们发现杨辉三角的规律,就是arr[i][j] = arr[i-1][j-1]+arr[i-1][j],也就是说某行某列的值,等于它上一行的同列,以及前一列的值之和
{
for (int j=0;j<=i;j++)
{
if (j==0||i==j) // 这两个条件都是杨辉三角的边上,直接赋值即可
{
arr[i][j]=1;
}
else
arr[i][j]=arr[i-1][j-1]+arr[i-1][j]; // 中间部分则用算法计算
printf("%6d",arr[i][j]);
}
printf("\n");
} system("pause");
}

代码下载及其运行

代码下载链接:

http://download.csdn.net/detail/yincheng01/6653803

解压密码为c.itcast.cn

下载解压后用VS2013打开工程文件

点击 “本地Windows调试器” 执行

程序运行结果

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqUAAAG6CAYAAAAxsD/hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACvoSURBVHhe7d0JvF5lfSfw5yYhBhGFtIYkpDPTzWVkCYtRUBbZghJcakel2oLLx7bTThVUrHbacT5ULFZRWttMZ6RNqUiddmw7LlQBDbbYpiogi8PYOjPOlBByWWojkIQkd85z3nNuzvvmvMvNTe5zznu/3/j3fc/+P8/75r4/zr33ZGLBr//VVKi4YNMHi2cAAHBwfHD99cWzjulQGsPoxMREeMlZZ4fTzlwbli07Kl8BAAAOlB3bvx/uvfv28PvXXhumpqbCs9acl8/PQ2kMpEceuTT8wtsuD4+HxfkCAAA4WFY8fXG48opfC48++kg443cv7YTSdX/3m+FX/sMHwuMTTylWAwCAg2vF4YeEy9/x78Lpv/P2MHHhhRdOnXLKaeHU83+iWAwAAHNjy7fvCNdff10nlP6HK34zPDZ1SLEIAADmxnN+aFl4yxt/qhNKP/4Hnwz3/eNksQgAAObGc1Y9Mw+lC4rpMKGUUkoppdQcV2n6Sum373+omAUAAHPjWUf/YPe37/9+88PFIgAAmBs/vvIHukPpPzzwSLEIAGA8PLbtsfDt//m/w6OPbivmHHxHHnl4eNazfzgcdvhh+bQeOj3082Mrls4slN78FzcUz2bmR559bPhXz/rXYcGC6R9fBQCYE1/9q9vD6uN+NCw76geKOQff1gcfDnfe9Z1w6mkn5tN66PTQzz6h9DtbHi0W1Zt47MHiWb0FExNhYsFEmJoK+T8ZFSv64k23hBevfWU49NCn5tMAAHPlli9+Nay74MXhkX9+vJhz8C19+lPDZz/31+Hs807Np/XQ6aGfH11+ZM9v38dQOaCOX716YB17/PHhmGOPC8ced1w4Lntezs9lAbVun42rh24Jv/PeD4WvPFSz7GBX9dhN6aNu+UGtyfCV374s/Om36pYppZRS+1f5hbM5rLrjNbWH8lfg904Xy+r+5Mvi6tXHYpvyTzEda9RzLk1fKf3fW79XzKp38rOWh4233ht+79ZvhwWL9oQFh0yFBYt3h4VZXfXqc8LSpUcWa3acfdmnwi1Xvzb8xoeuCaetfWV46mFPK5aUtoZbr7kyfPGBYjJ3Unj9b/x0+NfF1F53hz/55RvDsndcHs54ZjErt+8+Vv/MR8O/2XcHo5m8Kfz2h+8Ix+1znAOpz7lUjx3moo8+escgn/5c2NJZWozv6K9H/9e0Tmf7refO4jWs1a/fKC67NtyZP18Zzqus861PvT1cf0fneW7FBeHSt50bfjCf6L9d95j1LANgTt38hdvChReePudXCD/zma+Ec9a+KJ8etYevbtwYbv/bTcVUfye+8AXh1DPPLKbq9e3he49lU/G72XvDYMdU9mci/M2tsYe/K+bFY60Jp55+ZvjqrbeG2zft7S3v4Ywz8u+Qd3Jl5zvkU1MxaHYmlx5xWFcP/fzwsmfM7Epp2fqKow4NK5c/NaslYWV8vuzQYkl/tfuLlS1b/TPXhCuvKupnQrj+l98e/mSfK2XHhZecn8WAeyd75meVfeivfWex/TvXhQev++D+X+Vbdl74paveHc5cVrNspJoMX7mmrv9q9TmX6rFn3ccsquvY94Q/+eREuKh8ffLx/aPwPwa+HqO+pn2q846pX7bf1a/f+HpdGx48/1eKXleEL344nl+5PHu/l8tivf288Myh22VjlgXS5eUYxGWfvDk8NL1PpZRSc10x7CxcsGDOKh5vf3qIgfRTn/zdoRXXq9u+Wv166Dxf0PMYr2ouzK9sxkD6p5/6vemK03/zlU4g7Z6/qbPdgnL/cV/Zccvp7LGuh7oqxfVzsZFB9dj2nfl6Rx5xSPhfj2wJ/2Py/4b7Hvpu+J8P/598fhQzcvmzpM88du+/EFW3v6zXrJFOs9Pzjrk4/MZ08KnMz+qoY04M4a5vhoe75hf7yP7k01mgOufEzeGue7dW1pnLqjmnmqo/lybWceF1l54Xjiqnlx0fjl/5QHhocsjrUZ034DXdt0Ybv/2p2n4nvxnueuDkcM5ZR3Wmjzk/nL/yG+HeLEDH6ayVrJma9++g7b51Z7hz5bpw9jHFunHZxO3Z35diWiml1JxWLnuMz+asiuN29ZCJXQz6MxPV7er/dFR7iEFxIgussb/OY+y1EyY7n70LwkmnvDD85Gt/NuzZsyev/3rD+vCNLIDGx3JeXB7Xy/cXg2geRsvqHC/fZ/xgz5Q99KvSdCjtNDqgivU2fffvw65DHg+HHLorHLLkybAoqyhe8o3rlC/E8n/5//LHqHZ/5ZGz9bvmL4/B5+vhnnhl7aGbwjWXXxU2xiufcX74bPhSnN+1j+x41e2LWRMLHgwbP/pL4VPfujt86vJfCr/80ZvCQ/k6xfR0XRe+VW6bH68y3bPuNRsfLObXLbspm35/+MvNIdzxh9m84ngPbbxqep3pY9WdS/XYXX3E42RjsPG6yrH69VGsN32ufY4fKz9GOT+OU3V+dQyqtTU8uHllWLY8e9739YjjX52XVfU1zef1G9dy++7lfXvbp9cBY1E75lvCAyeeEI6Z3n55dm4hbJks+slaeeDG9xf7qx53wHbFG7AzP1ac3hwejO/h6Xll1Y9D5zXbe7xv/XG2/I/vHriNUkqp+up8VY4XzOLzuamp+BCfVXuIz+Pn44Cqeu1P/dt9qqpu+2pl/9dZr9JDtDCbn4fH4nFhtixWHlKzx9POOiucfOop4TUX/XzYvXt3Xjd84mPTz+P8uDyul19dLfZfBsxOGO2E01LZQ78qlTGg60TqKvu/fL3pMPqUJ7PHneGQp3SuoFb2mfvoWVcVz/rtO2u6s3Dg/M7T+HxFOGvt88Mdd91VTO9dd3p68qZw0+1Hh9XHrphedseGO8NxH/5Y+OA71oZlE3eFP37nfwlbXvar4YNxXqw3ToTr3pkFgGIf2d6K/cV1Px+Wv7tY78O/Glbf+f7wx/eWy7r3c+nZa8NF2TovXRnCCW/M5sXjZf1c//mV4eLyWB++JByT77vuXKrHrj7Pnob7w19uOaGzj3e/PITPbwgbJ+OyTh8hHi/f/5vCxJ1f37tt3+NvDRtvnghvKOe/MetlQ90YdNe3PhnP+aUDzmGU13TQuPa8ZiP0tnd6yFjU9PvQ1s4Pv5bTeeVzsj6y58e8vtzXx8K7XvZAuO7qLOAO2+6olWHF5s+EW/LzyereL+b/oZJNdK8/YByWnf2ecPGJXw83fWlrtv114botLw/vev3xA7fp3rdSSqmysv/Lgk8WnhYOrts2bgwfvfLKoRXXq9u+q7LPs/y41R7iZ1we/PpX9PDDD+cVXfarvzpdUXVZ3fa9VdtD9lhe1cxDYblOtnoZVk8/6+zw/Cx4XvSGXwyPPvrodMXpOP+0s7NAWgTKvfvaW9PzesahX5U6I5CpW6lapXhl9JAykC7eGRYv3pHPn9qzJ3+sVbO/cp/1848Oy+PVuKPWhsuufm8466hi2bEnhBNvvzPc27Xu/eHGq34xXP6OrK76Rlj9nr3rRye+qQxiWd17Z7hj5cvDT5+zfHr7iWNfmgXJr4W74wd7ORrlutV9v+OKcGMWLrZsjUGhZj9FdTYvpo9aHlaEr4U/fMcHwpd7f86191yqx64+j5WNx0vXru48P2p1WJ0F3/hfAWUf5x5brDexPJx1/vOLTeO6/Y6frfeGtWHiSx/onNsffC3fJluw77GLuveTvxj+cOKt4bKusat7PYpj99T0azpoXPP1el6zfq9PrN7Xa9BYxOrpd9nybCDLZUXl6bJnXqxl51wQTtz8jXBPNo4Dt4vv2Tdl4fcPivP7worw0pOKc69uM2QcjnnDW8OKz1+RvTabw0svjv9BNXwbpZRS+1bncyB/GOhrX/1q189M9qu43lDF8ao9xHnx2aCKduzYkVd09RVXTFdUXVa3fbVKXT1kOqExzosBdGE+nc8rfqZ0YuGC8Ndf/lJ2nn8TPvKhfz99zFhxOs6/7UtfzvaRrR9DabZNvl0ZUvPnMZBWjhnnDahS+bFeu1K1SnkYzQPpjvwq6aLFnW/f33XPveGuu+/JK/5Y6fas+SeeeCJfVre/TuULu+fde2O4ceLkcGztL/msDsef9LXOFaTpeUeHl73nd8OHPhLrV8LZXdv17r8z3T0vVhYaYpDN/8S8F+dlT45+Rbg83+/eekceyvrtp9hu+vnq8FP5dm8JE9f9QnjXZVeGL+dXODvLus6leuzq86yifF4xHWd1puOCONG9bO+8Psef/GL4yGW/ED4x8ZbOeb3nFaGTc7Nl+Z+9x471ret/Ifxh+NnwoTcUwXi66l6PzvG71ut6TbPlfce1WF5uN13FvN7euqY76+TrTVfvvN5+s+VbHgyT08u3hsktIaxYvu9/bMSKsmfZ8yHbHfvGvef2rhXhwW+sDMv3eT9n+xg4Dp3jRdnUyNsopZTqqexLZ/7bLvHJoMp85zvfGVq5uu0rNf200kOsbGJwZXbu3JnXVVdevk+Vy3J123dV/r/saaeHUryCmaXGTqDMq7iqWYTKv7r5S+Hvbvtq1/EufeevTz+P8+Pyr9xyS/b52wm0nVBbVP68s9/S9Dj0qdLIoTQeYPPm74S3/ot14U0rXhkufua/Ca8/4qLwuqf9dLGHvTo/dxB/GLbzS091+8srLot/yul7NoR3Xrs5XHDx+fkv10xMfiFcfen7K0FuIhyz9hUh3HHn3kAwk/0fe2I46f6/CJ+4pRKi7rkxfD5kgSm/upp3G3c4ve4t9xTrZXXvJzZ0rrLts+yb4cvlPqvHzPr/cr7O8nD2u94XLjj6/vDg1mJZVt3nUjl2z/M4WW6TVzm9Tx9bw5f/snPVM5/ud/ytD4TNWbgpr/RO3v31sLn22Nn+PvRvwxdWvC98+Kd7A2mnal+P+Kec7n1NB41rrGz72+/85vSyyVs+Hj5//5pwfH4FNPa2OWwt3g9dfQ8bi6K6+j32gnBBqGyTvxdeUVxt/Wa44RN7+7j3E78Xbj+6eJ8M3K674nZb1l3QufJbfT8PGYfOdu8L714Xwuev+0LR75CxU0optU9FC7OwVPcb6tWKnnzyyaEV1W1frfzb95lqD53AVgbB+orqjtlbUd321YrnHE2PRfY89pYHyGx5nNd5jFc1i74XLMwC523h1//jpdPHevd7PxhecNqL8sdyXlz+d399W35OnaujRRAtjlWG0/x41R76VGn6PqVbtnUuB/fzL37gsHDEYdkJZgffvfPJsHDRwuz5IdmS3WFq166wc1f8zfsQdu3eFXbv2ZM3EZu7+rfWh3Nf+bpw2D73Kd0Sbvng+8Ln7i8mo6NfGX758vPDsmIyPPiX4UNXfj2c8N5/H84+qpiXb/fxEC6O86rPi8XTOvvfcv5/Cq8/rpiVuzNc/7b/FL5RTIWwJrzpmjeFY+LT/Hibw/ld03+eBZ+Ok95c2VfXsr372Hrzr4ff+Mw/Tp/L1j/6ufD78Ucbo5N/Llydhbu9Kv2HyrG7+oj9fjYsnx6DnnPu6mNVuODCleFzt6+cHsd7ao/fGZty7FeevCaEbJ19jn3X74fLrt17r7KO7BgDX48hr2nUd1w7229ZsSZ84+vlcSuvT2Z6fDNdfccZQ8aiY9D4dR8rVM+/9r1Zt13P2F74vvDOLPzn8m0q7+c+45C/Zg+Uxyv2t6J47fpsA0C9z39mY3jVK84M//RYcYWxj1tvvikPWsOsefGLwhnnnFtM1TvisMXhz/5iY3jZhZ17iTaph23bs8DWpXMBMYuE+bNbv/jF8Ld/9dedWZkXnPbi8JLzzgsbe+a/MJt/RjY/j5Rxw73ZctrhSxZ19dDP8sOf0v3PjD74/cED9Wd/9J9j1C2m9nXIIYuyxQvDkzt3TJ9etOKHfjgc//xTw6FPPXD/zOjWm64IH3jgwvCRn6kGvAMg+8D/zfdvDi/9rUowOcimz2XtlgNz7CxIXXrjyvCed/cEwYPooL0es9VnLBrbLwAH3Of++5fDq191Vvje450rjHPhGU89JPy3P/tSuODlL8mnm9TDPz9R7SHmumpq65jIA2p1fpn/snn5JsUa8UrnVGfN6TViVixuD/r0Q7t76Oeopy2e2c3zL7zojWHtT/xU3zrrwteEl6x7dTivZ/7qNS8KSw49tHaf+1tHnffycPLXbw/31CybTU3e/bWw+eiVnW8zz1GV53LLfh37wXDLVb9fGYdvhus/vimsPOmEJOdwoF+PmdXoY9GMfpVSSs1ZxW8lL5y7Kn/Rp4k9dJ7Hx1jV/Be36XzrPSbMzrqdeZ31inXjn2JG9v+dx2K6nJd/Wz8+r+uhpkrTV0onH++9nDuP3PXx8Lb/HP/prBeEt3zsLeHYzty5MdtjP3hj+OAVnw7ld8yPfsUV4fJzi28XzzfGAoAeX7rpq+HkE58TVqyYq+8fhvDAA1vD12+/L5x17qn5tB46PfTzzKcu6v72/UOP7y4WAQCMh+9vezz87d/cEZ54Ynsx5+A79NAl4YWnnBCednjnRxf1MPhHOH/wqQu7Q+nDTwy4zygAABwEP3Dogu6fKc1/CEAppZRSSqm5rML0ldJHtu/721cAAHAwLV0y0fn2/bp166au3XBD31C66eZPF88AAGDmLr744nDf/duKqW4xlL75kotGC6WbNsXfDgcAgJl573vfG1atWnXgQun69euLOQAAzAfbt28Pk5OTYdGiRWHx4sX5Px9aFe8zOjU11XW/0ai8B2ncfseOHSOF0u49AwBAAkIpAADJCaUAACQ3lqF048aNxTMAANpg7EKpQAoA0D5jE0pjGBVIAQDmzsKFC/Pfyo+PszU2ofTMM8/MCwCAgy8G0XiLqBe+8IX542yDqV90AgBgRmIAjfXc5z43LFmyJLz1rW+ddTAVSgEAGFkZSI855pjwvOc9L5xzzjnhhBNOCNdcc82sgqlQCgDAyGLovOSSS8JrXvOa8JM/+ZPh+c9/fh5OTznllHDrrbfu868+jUooBQBgZLt37w4bNmwIv/ZrvxZe97rXhbVr14bTTz89rFmzJpxxxhlhz549xZozMzahtPe37/02PgDAgRdD6c6dO/N68sknpx/Lisv3x9iE0vK373sLAIDm8+17AACSE0oBAEhOKAUAIDmhFACA5CbWrVs3de2GG8Ij26eKWd023fzpsGnTprB+/fpiDgAA88H27dvD3XffHb773e+Ghx9+uJi718TERJiamsofq4444ojwYz/2Y2HVqlVhx44d+eN9928rlnZbumQivPmSi4RSAADqxVD62c9+Nv/37ZcuXVrMDXkQjeLyeFvSqak9+bzydlH/9E/fC9/5zt+H0047beRQOpbfvm/7/UndXxUAaIrJycnpQBqD565du8OTu3Zl4fPJ8Pjj28Njjz0Wtn3/sfC9720Lkw89HP7fP27O/9WnLQ9uybcZ1diFUoEUAODAimE0VvzXmvLavae4Kvpk2LFjZ341NNYTT2yfXjZTYxNKY5hrc6Bre/8AwHjrhNK9wXR3Fj537d4Vdu3aFZ7MwmkMqFPZ8jLAztTYhNK2/wtO/gUqAGA+c0soAACSE0oBAEhOKAUAIDmhFACAkcRbPS1evDg85SmLw5IlTwlPP/zw8IxnPD0ceeQRYenSI8PTnnZYsebMjU0o7f3t9bb9Nnvb+wcAxt+CBQvC2vPODW9/29vCB658f7jmo1eHj/32NeHPPv2n4Zt3fiMLqkuKNWdubEJp+dvrvdUWdb3HAgBokuc973nh9NNPD6eceup0HXPssWHl0UcXa+wf374HAGAk8f6kV3/ko+EnXv3qcOaZLwlr1rwwnHTS88OP//izwzOfuTz/Z0f3l1AKAMBIfPseAIBG8O17AACS8u17AACS8+17AAAaYe3ateHCCy8M52WPZa15wQvCD//IjxRr7J+xDKVtvb9neW/Stt+jtM29AwD9xW/fX/aOd4azzzknnHTSyeG5z31eeNaznhOOPvqHwtOffqRv31e1NRCVfVfvT9rGcxFIAWB87d69O+zcuTPs2LEzC6A7wj9v2xa+971/Do8++k/hkUceDd///mPFmjM3NqE0hiGBKB3jDwDMxtiE0rb/C0j6BwDmM7/o1EDlFUchDwCYL4TShhFIAYD5SChtEIEUAJivhNKG6A2kcbqcBwCQ2tTUVF7xtlCxpqayx92d553aHfbEeVntj7EJpb0hrq2hblz6but5AAD7imF0dxZAd+3ald8WKj7vTD/Zqd27ppfFdffHxLp166au3XBDeGR7/Q423fzpsGnTprB+/fpiDgAA80G8Gf6f//mfhxe/+MXh8MMPz4NovCIac2cMn9u2bcvnTcU/+dXSzpXUxx57LPzDP3w7nHvuuWHHjh1h1apV4b77txV77bZ0yUR48yUXCaUAANSLofSOO+4I3/3ud8PDjzxczB3uiGccEZYtWxaOP/54oRQAgNmJoXRycjIsWrQoLF68OCxY0P2TnxMTE/kV0/hYFadjxe1HDaV+0QkAgOSEUgAAkhNKAQBITigFACC5sQylbb0/Znlvz7be47Pt/Zfa3DsAtNXYhdK2Boqy7/gvOlX/Vae2aHv/pba+fwCg7cYmlMYw0eZAUQ1zbdT2/tv+/gGAthubUNr2UERa3j8AkJZfdGqY6hW7NoaktvcPAKQhlDZM9YpdG7+d3Pb+AYA0hFIAAJITShui+m3vNmp7/wBAWmMTSntDUdtCUvVb3mXf5bw2aHv/1b6j3mkA4OCaWLdu3dS1G24Ij2yfKmZ123Tzp8OmTZvC+vXrizkAAMwH27dvD5OTk2HRokVh8eLFYcGC7uuZExMTYWpqKn+sitOx4vY7duwIq1atCvfdv61Y2m3pkonw5ksu8u17AADSE0oBAEhOKAUAIDmhFACA5IRSAACSE0oBAEhuLEPpONxfsq33ySz7bvtr0OZzaPvYAzA/jV0oHYcP5LaHoXjT/DbdOL9Xm99DAikAbTU2oTR+GI/DB3Jbz6Hsu81hNGrz+I/D+x+A+WtsQmnbr85F4xLs2qrN4z8O738A5je/6NQQ4xJIyyt25fm0xbiMPwC0lVDaML2Brm3hrnrFrm29R20ffwBoK6G0IcowVw11UfU5B4/xB4C0hFIAAJIbm1Ba923Xtn7rtfc82qC8olgd97ZeZWzj+FfHPeqdBoCmm1i3bt3UtRtuCI9snypmddt086fDpk2bwvr164s5AADMB9u3bw+Tk5Nh0aJFYfHixWHBgu7rmRMTE2Fqaip/rIrTseL2O3bsCKtWrQr33b+tWNpt6ZKJ8OZLLvLtewAA0hNKAQBITigFACA5oRQAgOSEUgAAkhNKAQBIbixvCRXvz9i2e2T2u6dkE8+j3/jWnYP+50ab3j/D9Ht9AJh7bgk1C/0+nNsifhhXq2n6jW85v7f3pr0ebe9/mGr/5Tm0SdvGG4ADZ2xCafww84F28Mx0fJv2WrS9/3E309cHgPEzNqG0rVeG2mIm49vEcNH2/sfdTF4fAMaTX3RqmPKKUduDUdsDRlv7H5f3DwDzj1DaEOWVorKiNgaLtoehtvY/Lu8fAOYvoZQDrgxFbdX2/gGgjYTShohXtcbhypZAmsa4vH8AmL/G5j6l/T6Q2xQyes+hSb2PMr516zTlHNre/yia/P4ZZpTXB4C5N5f3KR3Lm+cDADB7bp4PAMC8IpQCAJCcUAoAQHJCKQAAyQmlAAAkJ5QCAJDcWN4SKt7zsK33N6zer7Gp51A3vm24z2Rvj6OcQxNfg7aO/yiq59G23kt1rw9AW7kl1Cz0+3Bug7L3+IHW1A+1YeNb9t60c6gb2+q59C6vW6cJ2jr+o6h7jdqmae8XgDYZm1AaPwza/IFQ/UBuoraP70w17VzHffzLc2tzGB3n1wdgLoxNKG3z1ZU2aPv4zqT/JoaLto//uPP6AMyeX3RqmPKKS1uvurSh/7K3QSGirQGjDeM/SNv7B2D/CaUNU73i0qYP5rLvpvdf9lT22KutYagt4z9M2/sHYP8JpcwbwwJpadhyAODAE0o5IGLga/KVrd5A2q/ftgbSpo8/AAwzNvcp7feB3KaQ0XsOTep9lPEdt/6jppxD28d/FG3uf5TXB6CN5vI+pWN583wAAGbPzfMBAJhXhFIAAJITSgEASE4oBQAgOaEUAIDkhFIAAJIby1tCxXsGtv0ejVVNOZdR7yPZ1PEf1H+/8W/SeYxz/1VxvSb1PYp+4x+18Vza1jNw8Lgl1CwM+nBog/hhUFaTlONa7a1urJs6/qP2Xy6vrtcE86X/unlt0sSxn4m2jz/QbmMTSuMXU19Q02n6+Lc5KERt738Yf3/TMv5AE4xNKBU6Dq5h/TW9f9Ia9/eP/gFmzy86NVR51aKJHxRN7m2Y6hWhuv7L5eU6TdP2/qNB/Y+L+XCOAAeaUNpATf5Aa/uHbey77L0a3Mr5/ZY3Rb/+qr3XLW+Ktr9/RjEfzhHgYBBKG6bJH2g+bJkNgRSAQYRSRtL7YRuny3ltMKzfpp/POPQftfX9A8DBNzb3Ke33Ade2Kxa9H95NMWx82zD+vT329jZseWpt7n/Y+2PY8rYoz6Otffdq23kAB95c3qd0LG+eDwDA7Ll5PgAA84pQCgBAckIpAADJCaUAACQnlAIAkJxQCgBAcmN5S6h4z7023l+v916BTTuHYf01uf9R78NYXa8N/Udln3XrNOUc2j7+Ue85DOo9alr/w7S9/1I8j7b2Dk3kllCz0PuFtS3KvuMX0/ILapPOZVh/Te+/VPZX7bNUdw5NM2rv5fKmvQbV/soeS00e/7reqmM7bHnTtb3/Uht7BvYam1Aavxj5gsT+qn4oj4O2/V0Yt/Fnbvn6D+NhbEJp9b/w26ypX1hHHV8fDAfHTN7fXoMDb768/9va/0z+fgDN5RedGqL6BbX8YGjqF9m6/trSf+ytrDrDljdF2V+/MW7ye2fQ+A5b3gRlb218//fT9v6B8SCUNkTdB0ETP5j7fWA1vf/YV7Wiuv6GLW+Cfq9B1NSey3EdNr7DlqfWb+zr5jf1tajT9v6B8SCUNlDvB15T9PtA7tXU/sfBKK+B8T845sv73/sHSEUoZSS9H8hxupzXBm3rd381NVC0ffzL3tv6/gdog7G5T2m/D4g2/Vd/7zk0qfdRxrfJ/UfD+mt6/1HZY11vda9Rk86hzeNfN7ZRtccm9z+KNvc/yusD7J+5vE/pWN48HwCA2XPzfAAA5hWhFACA5IRSAACSE0oBAEhOKAUAIDmhFACA5MbyllDxnnVtvD9d0+8TOEp/1XXa2H+pXDfFOcRjDxvbqKnj3/b++xml/1K5bpPOoe3jP8xMXp8mi+fR1t4ZT24JNQu9X5jaouw7fjEqvyA16VxG6a9unaaYyfj2mz8XhvU0qP+6deZa2/vvZ5T+S/3mpzRK/3XrtMUo59cGbewZDqSxCaXxL7O/0AfPsA+q6odCm6V6D832/Zt6/Nve/4EymzE4mObL39+2mu3fHxgXYxNKh33RhWjQF/6UH8zD3r9Nf3+3vf9RNfX9Q7uNy98PmC2/6NQQ5Rek+ME26IMvtWp/dV9Ey+VNO4dqr3X9DzqnphnUazn25TpN1Mb+x+X9Ux3btr5/6pTn0sbegb2E0gaJX1irHxRN/ICr9lj3xX/Y8lTKXqpjWtdfnFed36RziOrOo6qp419qa/91fdf1F+dV5zfpHKJh49vU8R9Ftfeo+hxoB6GUeafuw6r8QCurVLduKmVIaFJPM9H2/kt1/cd51SrVrQtAPaG0YZr6wR37atuVk3HS+75o2+vR9v7bbr6Md+/7DGiXsblPab8vuG364lQ9hyb23TvGvT0OW57aqP2lOI/eY5bKYw9bHqUc/7b3P4pR+2vqeQzrq+njP0y1/zb3XtW282A8zeV9Ssfy5vkAAMyem+cDADCvCKUAACR3QENpv5+L6dVvvVG3jwatO5P9RAfquKVh68y299luDwDQNDMKpQc78MQf6p7NMeK25fb99lOuU61B8w+2uToOAECTzfgXnWKIKn8jcJRAVffbg9V99Bq0rKpcr7eHUbaN+h1n2PGrx6sev66XqHdfvfsfNt2rbnndcUuD9gUAMEhrftEpBp5q9Zs3SAxU1eo3ryrOqzveTMT1e/dd3e8g1eNV1+83f5i6c4z6zS+Vy8vjVo9dnQYAaLpZ3xJqUHCqhqK69eLyOH9QeKpb3m+bQfuqO/6oyn0OOu4gdduXz4c9VvXOG2UdAID9NZdXSg/ofUpHDUTlesNCVt3+4ryo7jh16x9I5bFL8Vj9euxdVrdt1Lt93f6i3u2j8hjD1O0PAGCYRobS1772tcWc7kA1it5QNCh4DQtQ5TH3d/tolL779dx7jOp03X7r+hm2TdWw7YeZyboAAFWNvlJ6IEJOGcTifoaFsqg8XnnsUbap6u132DkMWl5dVu2juv6o20fDpnv1W16dXz4fti8AgEFaFUrjdD/9wlPUu6xuv/2me5eV+s3vFdcbpnc/ddv09jNonaiuv+q86va960V121eVy4etBwAwirkMpd173k8xAPVWrxiUZhOW9ne7fqq99lad6rLyeTyfqrp1SuW65Tj0bhunq9vWLS8fq1XOi6rHAwBokwMSSnuDUhmSqnpDWlVcf64DVW+/1dofvdv3TpfnV45D9XzjOr3nH6fLbaNyebltWeW86roAAG1zQL59X50u9Zsf1S0rQ1UZsPptG+3PMfuZ6Ta969dtP5N9jrK/QeL6w/TuvzST45RSbw8AzJ1WfPu+Gi7i896aqRhQYsVtD1ZYKfuq9lces86g8xi0bJi47YHYPlY5bmVF1cfyOQBAk+1XKC3DUKkMP9XaH+V+42NK5fH79VLts26duvOP65QVl9etM0jd9r37KJdF8TFO9+q37ahSbw8AjKf9CqWDAkVdECoNW1buNz4OWrcU16lWv3lRfN6v75kGpLK/3n77VblO9bGqd93qdDlv0PZRXK93WZwutwcAaLJZ/4tOdWGobl6pd1kZmurW77efQfsfVXncfma7/7kyaPyiAzFWAMD8NJc/UzrrUAoAwHhqxS86AQDAgSKUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAJCeUAgCQnFAKAEByQikAAMkJpQAAjGzhwoVh8eLFeR1yyCHTj2XF5ftDKAUAYGQxdL7oRS8Kq1evzuukk04Ka9euDZdeemlYv359WLBg/+KlUAoAwMh2794dbrvttjyQnnrqqeFVr3pV+Pmf//lw0UUX5Y979uwp1pwZoRQAgJHFUBprw4YNYdmyZXk4ffaznx3WrFmTB9K4bH8IpQAADDQxMdFVMXzGet/73pd/O/+5z33urAJpJJQCADBQDJ51wXRqaiq87GUvyx/jdO86MyGUAgAwUAyl8ReYekNnDKK7du2adSCNhFIAAAYqA2mvcl41jNatNwqhFACAgequko5SMyGUAgAwUL9QGpWPsyWUAgAw0OOPP75fNRMT69atm7p2ww3hke1Txaxum27+dDj77LOLKQAAmJlVq1aF++7fVkx1W7pkIrz5kouGh9LnHH148QwAAPbPrEMpAAAcLGUo9TOlAAAkJ5QCAJCcUAoAQHJCKQAAyQmlAAAkN/3b9wAAkML0LaGKaQAASCCE/w8bMT704oXlDwAAAABJRU5ErkJggg==" alt="" />




基于visual Studio2013解决C语言竞赛题之0509杨辉三角的更多相关文章

  1. 基于visual Studio2013解决C语言竞赛题之0401阶乘

      题目 解决代码及点评 这个是一道经典的教科书题目,基本上每本基础的c/c++语言教科书都会有这个题目 用来演示循环语句 #include <stdio.h> #include ...

  2. 基于visual Studio2013解决C语言竞赛题之0205位数求和

     题目

  3. 基于visual Studio2013解决C语言竞赛题之0201温度转换

    题目 解决代码及点评 #include <stdio.h> #include <stdlib.h> void main() { float f; float c; float ...

  4. 基于visual Studio2013解决C语言竞赛题之0409 100以内素数

       题目 解决代码及点评 在已经知道素数是怎么判断的基础上,增加循环,可以判断出100以内的素数 /******************************************* ...

  5. 基于visual Studio2013解决C语言竞赛题之0408素数

      题目 解决代码及点评 判断一个数是不是素数的方法,一般是看n是不是能被n以内的某个整数(1除外)整除 为了提高效率,这个整数范围一般缩小到n的平方根 如果在这个范围内的整数都不能整除,那么 ...

  6. 基于visual Studio2013解决C语言竞赛题之0407最大值最小值

      题目 解决代码及点评 这道题考察循环和比较 /*********************************************************************** ...

  7. 基于visual Studio2013解决C语言竞赛题之0406数列求和

      题目 解决代码及点评 这个题目,还是考察for循环的使用 以及数列规律,该数列的特点是第n个分子 = 第n-1个分子 + 第n-2个分子,分母也是此规律 而另外一个规律是第n个分子和第n- ...

  8. 基于visual Studio2013解决C语言竞赛题之0405阶乘求和

      题目 解决代码及点评 这道题和上一道题类似,第n个累加项 = n-1累加项的n倍 由于有这个规律,我们可以用一个for循环实现 但是例子代码并没有这么做,大家可以回去修改下代码,使得代码更 ...

  9. 基于visual Studio2013解决C语言竞赛题之0404循环求和

      题目 解决代码及点评 这道题考验for循环和一个简单的算法 因为每次累加的值有规律,后面一次累加是前面一次累加的两倍 所以可以用简单的循环,计算累加项和累加结果 /************ ...

随机推荐

  1. 射频识别技术漫谈(23)——ISO15693的载波、调制与编码

    射频识别技术中的通讯大多是主从式,主动方一般是读写器,被动方称为“卡片”或“标签”.到底是叫“卡片”还是“标签”,好像也没有严格的区分.习惯上可以从以下4个方面界定:一是形状,卡片通常体积较大,更像“ ...

  2. opencv-python 学习笔记2:实现目光跟随(又叫人脸跟随)

    如果机器人的脸能随着前方人脸而转动,你会不会觉得这种互动很有意思.年前的时候,学习了一下opencv,通过opencv可以简单的实现人脸跟随.再加上几个舵机控制头部转动,机器人就可以互动了.呵呵 这里 ...

  3. Oracle 日期计算

    日期相减,求天数 方法一: )),createdate from goods t

  4. C语言实验——一元二次方程Ⅱ

    C语言实验--一元二次方程Ⅱ Time Limit: 1 Sec  Memory Limit: 64 MB Submit: 169  Solved: 131 [Submit][Status][Web ...

  5. uestc 250 数位dp(水)

    /* 数位dp 水题 开两维一个记录长度,一个记录上一个数 */ #include<stdio.h> #include<string.h> #define N 13 int d ...

  6. Sharepoint 2013 启用搜做服务

    参考文件: http://www.cnblogs.com/jianyus/archive/2013/02/04/2891801.html 1. 创建好网站集,进入网站内容,点击搜素,会出现如下错误:( ...

  7. Android中的一些基础知识(三)

    最近在回顾Android的基础知识,就把一些常见的知识点整理一下,以后忘了也可以翻出来看一看. 在TextView中显示图像(使用< img>标签) 在TextView中显示图片的方法有许 ...

  8. 裸机代码(uboot) : clear bss

    一. bss介绍: 代码中函数.变量.常量 / bss段.data段.text段 /sct文件..map文件的关系[实例分析arm代码(mdk)] bss和data的区别: 全局的未初始化变量存在于. ...

  9. windows7 安装python

    首先去Python官网,https://www.python.org 找到downloads,我这里系统是win7 x64,下载的是最新版本3.4.2 下载完成后有个msi文件,选择文件安装目录,一路 ...

  10. [转载]CSS 创作指南(Beta)(css规范)

    当年还在纠结各种规范的时候,不知道从哪里翻到这个,就让我脱离了css这个规范的苦海了... 反正就是团队和项目合作说的算,选择合适的进行使用就可以了,见到合适的文章,我也会转载过来的 来源 https ...