概率DP,还是有点恶心的哈,这道题目真是绕,问你T个队伍。m个题目。每一个队伍做出哪道题的概率都给了。冠军队伍至少也解除n道题目,全部队伍都要出题,问你概率为多少?

一開始感觉是个二维的,然后推啊推啊没有推出来,一開始觉得冠军队伍仅仅能有一个。所以必须控制一个队伍解题数比其他队伍多,并且这个冠军队伍解题数必须大于等于n。大于n的时候其他队伍解题数就非常难了,直到坑到最后才发现 原来能够非常多队伍都是冠军,大家都是十道 那么大家都是冠军。…………

然后还是继续推二维,结果还是没想出。看来不是先如果方程才好做的,先整体来考虑,全部队伍出题概率,就是1 -减去没出题的概率。没出题的概率非常easy的,每一个队伍每道题都做不出 的概率累乘就能够了。那么冠军队伍至少出n道要怎么求呢,想了半天也没想好。后来发现直接 出题的概率 减去 每一个队伍出题数目是在 1到n-1之间的概率累乘。 就能够了,为什么呢?首先每一个队伍都出题这个条件已经满足了,剩下的反过来想。如果每一个队伍出题数都在1到n-1之间那么 就不符合题目要求了。那么减去这部分答案就能够了,这样想就简单点了

后来还是想推二维。发现想不出来,最后推了一个三维的

dp[i][j][k]代表第i仅仅队伍前j道题解出了k道

边界dp[i][0][0] = 1,能够这么理解,前0道题目除了0道题目 这是肯定的 所以概率为1

后来不服。又强行推了一个二维的,如果好方程以后发现 跟三维的意义一样嘛,看来还是要先主要的弄清楚了才干够

先贴个三维的

int m,t,n;

double mp[1000 + 55][50 + 55];

double dp[1000 + 55][30 + 5][30 + 5];//dp[i][j][k]第i队前j道题做出k道

void init() {
memset(mp,0.00,sizeof(mp));
memset(dp,0.00,sizeof(dp));
} bool input() {
while(cin>>m>>t>>n,n + m + t) {
for(int i=1;i<=t;i++)
for(int j=1;j<=m;j++)
cin>>mp[i][j];
return false;
}
return true;
} void cal() {
for(int i=1;i<=t;i++) {//边界处理
dp[i][0][0] = 1.00;
for(int j=1;j<=m;j++)
dp[i][j][0] = dp[i][j - 1][0] * (1 - mp[i][j]);
}
for(int i=1;i<=t;i++) {
for(int j=1;j<=m;j++) {
for(int k=1;k<=j;k++)
dp[i][j][k] = dp[i][j - 1][k - 1] * mp[i][j] + dp[i][j - 1][k] * (1 - mp[i][j]);
}
}
double qq = 1.00;
for(int i=1;i<=t;i++)qq *= (1 - dp[i][m][0]);//dp[i][m][0]表示i队一道题都没做出。减去就是出题了
double pp = 1.00;
double tmp = 0.00;
for(int i=1;i<=t;i++) {
tmp = 0.00;
for(int k=1;k<=n - 1;k++)tmp += dp[i][m][k];//i队出了1道,2道……(n - 1)道的概率
pp *= tmp;
}
double ans = qq - pp;
printf("%.3lf\n",ans);
} void output() { } int main() {
while(true) {
init();
if(input())return 0;
cal();
output();
}
return 0;
}

二维的。事实上没什么差别:

int m,t,n;

double mp[1000 + 55][50 + 55];

double dp[30 + 5][30 + 5];//dp[j][k]前j道题做出k道

void init() {
memset(mp,0.00,sizeof(mp));
memset(dp,0.00,sizeof(dp));
} bool input() {
while(cin>>m>>t>>n,n + m + t) {
for(int i=1;i<=t;i++)
for(int j=1;j<=m;j++)
cin>>mp[i][j];
return false;
}
return true;
} void cal() {
dp[0][0] = 1.00;
double qq = 1.00;
double pp = 1.00;
for(int i=1;i<=t;i++) {
for(int j=1;j<=m;j++)
dp[j][0] = dp[j - 1][0] * (1 - mp[i][j]);
for(int j=1;j<=m;j++) {
for(int k=1;k<=m;k++) {
dp[j][k] = dp[j - 1][k] * (1 - mp[i][j]) + dp[j - 1][k - 1] * mp[i][j];
}
}
qq *= (1 - dp[m][0]);//当前队伍出题的概率,全部队伍累乘
double tmp = 0.00;
for(int k=1;k<=n - 1;k++)tmp += dp[m][k];//当前队伍出题数目在[1,n)之间的概率
pp *= tmp;//全部队伍要累乘
}
double ans = qq - pp;//减减就是答案
printf("%.3lf\n",ans);
} void output() { } int main() {
while(true) {
init();
if(input())return 0;
cal();
output();
}
return 0;
}

POJ2151Check the difficulty of problems 概率DP的更多相关文章

  1. POJ 2151 Check the difficulty of problems 概率dp+01背包

    题目链接: http://poj.org/problem?id=2151 Check the difficulty of problems Time Limit: 2000MSMemory Limit ...

  2. [ACM] POJ 2151 Check the difficulty of problems (概率+DP)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4748   ...

  3. POJ 2151 Check the difficulty of problems (概率DP)

    题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 ...

  4. [POJ2151]Check the difficulty of problems (概率dp)

    题目链接:http://poj.org/problem?id=2151 题目大意:有M个题目,T支队伍,第i个队伍做出第j个题目的概率为Pij,问每个队伍都至少做出1个题并且至少有一个队伍做出N题的概 ...

  5. poj 2151Check the difficulty of problems<概率DP>

    链接:http://poj.org/problem?id=2151 题意:一场比赛有 T 支队伍,共 M 道题, 给出每支队伍能解出各题的概率~  求 :冠军至少做出 N 题且每队至少做出一题的概率~ ...

  6. [poj2151]Check the difficulty of problems概率dp

    解题关键:主要就是概率的推导以及至少的转化,至少的转化是需要有前提条件的. 转移方程:$dp[i][j][k] = dp[i][j - 1][k - 1]*p + dp[i][j - 1][k]*(1 ...

  7. POJ2157 Check the difficulty of problems 概率DP

    http://poj.org/problem?id=2151   题意 :t个队伍m道题,i队写对j题的概率为pij.冠军是解题数超过n的解题数最多的队伍之一,求满足有冠军且其他队伍解题数都大于等于1 ...

  8. POJ2151-Check the difficulty of problems(概率DP)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4512   ...

  9. poj2151--Check the difficulty of problems(概率dp第四弹,复杂的计算)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 5009   ...

随机推荐

  1. Lenovo k860i 移植Android 4.4 cm11进度记录【下篇--实时更新中】

    2014.8.24 k860i的cm11的移植在中断了近两三个月之后又開始继续了,进度记录的日志上一篇已经没什么写的了,就完结掉它吧,又一次开一篇日志做下篇好了.近期的战况是,在scue同学的努力之下 ...

  2. Ubuntu 14.04 下手动安装Firefox的Flash插件

    有时候我们不得不採用手动安装一些软件. Ubuntu 14.04 下手动安装Firefox的Flash插件有下面几步 1. 下载Flash插件 下载地址为http://get.adobe.com/cn ...

  3. LINQ更新用户

    public Boolean UpdateUser(int id, string userName, string account, string password, string EkeyID,  ...

  4. c - 字符串长度.

    //字符串的长度. int lenOfStr(char *s) { char *p = s; ; while(*p++) len++; return len; }

  5. c标签的使用方法

    1. c:forEach <c:forEach items="> 注意varStatus相当于for循环计数器,从1开始,用${varStatus.count}获得计数器的值.而 ...

  6. 用Gmap开发winform地图应用程序(一)Gmap介绍与添加

    GMap.NET是一个强大的免费开源.NET组件.该组件允许用户加载Google.雅虎.必应.街景等地图.用户可以在这些地图上进行点的标记.路线规划.区域操作.GMap.NET应用于Windows F ...

  7. jQuery自学笔记(五):关于jQuery的遍历

    向上遍历 DOM 树 parent()  //返回被选元素的直接父元素,该方法只会向上一级对 DOM 树进行遍历. parents()    //返回被选元素的所有祖先元素,它一路向上直到文档的根元素 ...

  8. 关于自动编译iOS工程,生成app及ipa文件的方法-备

    文章地址. 1.所需语句(可直接在命令行中执行) xcodebuild -configuration Release        进入所在工程的根目录文件夹,执行上面的语句,即可开始自动使用rele ...

  9. C++类的数组元素查找最大值问题

    找出一个整型数组中的元素的最大值. /*找出一个整型数组中的元素的最大值.*/ #include <iostream> using namespace std; class ArrayMa ...

  10. Eclipse快捷键集结

    Debug快捷键 F5单步调试进入函数内部.   F6单步调试不进入函数内部,如果装了金山词霸2006则要把“取词开关”的快捷键改成其他的.   F7由函数内部返回到调用处.   F8一直执行到下一个 ...