(1)首先下载word2vec,地址:https://code.google.com/p/word2vec/,可能下载的时候有问题,google上不去,那么可以从csdn上面下载。
解压后目录如下:
 
w2v/
`-- trunk
|-- LICENSE
|-- README.txt
|-- compute-accuracy.c
|-- demo-analogy.sh
|-- demo-classes.sh
|-- demo-phrase-accuracy.sh
|-- demo-phrases.sh
|-- demo-train-big-model-v1.sh
|-- demo-word-accuracy.sh
|-- demo-word.sh
|-- distance.c
|-- makefile
|-- questions-phrases.txt
|-- questions-words.txt
|-- word-analogy.c
|-- word2phrase.c
`-- word2vec.c
(2) 进入w2c/trunk文件夹,运行make,编辑文件。从makefile中可以看到,需要编译的文件,主要有两个word2vec.c和distance.c,编译后生成word2vec和distance。但是在编译的时候可能出现问题,参照http://blog.csdn.net/zshunmiao/article/details/15339105,可以对问题进行解决。
makefile内容如下:
(3)然后就可以跑个demo了,运行./demo-word.sh。
demo-word.sh内代码如下:
CC = gcc
#Using -Ofast instead of -O3 might result in faster code, but is supported only by newer GCC versions
CFLAGS = -lm -pthread -O3 -march=native -Wall -funroll-loops -Wno-unused-result all: word2vec word2phrase distance word-analogy compute-accuracy word2vec : word2vec.c
$(CC) word2vec.c -o word2vec $(CFLAGS)
word2phrase : word2phrase.c
$(CC) word2phrase.c -o word2phrase $(CFLAGS)
distance : distance.c
$(CC) distance.c -o distance $(CFLAGS)
word-analogy : word-analogy.c
$(CC) word-analogy.c -o word-analogy $(CFLAGS)
compute-accuracy : compute-accuracy.c
$(CC) compute-accuracy.c -o compute-accuracy $(CFLAGS)
chmod +x *.sh clean:
rm -rf word2vec word2phrase distance word-analogy compute-accuracy

然后输入单词,就可以计算其近义词,并按照顺序排列。
Enter word or sentence (EXIT to break): china       

Word: china  Position in vocabulary: 

                                              Word       Cosine distance
------------------------------------------------------------------------
japan 0.648631
taiwan 0.630534
manchuria 0.599535
tibet 0.583566
prc 0.560898
kalmykia 0.558937
xiamen 0.556037
jiang 0.553501
chinese 0.547065
liao 0.543676
india 0.536273
korea 0.534758
roc 0.530741
thailand 0.529334
hunan 0.527629
liang 0.527374
shanghai 0.526314
chongqing 0.525559
nanjing 0.521342
yunnan 0.518669
wuhan 0.516914
zhao 0.513246
xinjiang 0.509939
tuva 0.507322
guangdong 0.507288
hubei 0.505540
guangxi 0.501068
taipei 0.497673
macao 0.497303
hainan 0.494808
shandong 0.493323
shenzhen 0.491871
hangzhou 0.489323
balhae 0.488846
guangzhou 0.486907
fujian 0.485473
zhejiang 0.485011
harbin 0.483171

word2vec配置到使用的更多相关文章

  1. 用中文把玩Google开源的Deep-Learning项目word2vec

    google最近新开放出word2vec项目,该项目使用deep-learning技术将term表示为向量,由此计算term之间的相似度,对term聚类等,该项目也支持phrase的自动识别,以及与t ...

  2. Google开源的Deep-Learning项目word2vec

    用中文把玩Google开源的Deep-Learning项目word2vec   google最近新开放出word2vec项目,该项目使用deep-learning技术将term表示为向量,由此计算te ...

  3. 学习笔记CB011:lucene搜索引擎库、IKAnalyzer中文切词工具、检索服务、查询索引、导流、word2vec

    影视剧字幕聊天语料库特点,把影视剧说话内容一句一句以回车换行罗列三千多万条中国话,相邻第二句很可能是第一句最好回答.一个问句有很多种回答,可以根据相关程度以及历史聊天记录所有回答排序,找到最优,是一个 ...

  4. 利用jieba,word2vec,LR进行搜狐新闻文本分类

    一.简介 1)jieba 中文叫做结巴,是一款中文分词工具,https://github.com/fxsjy/jieba 2)word2vec 单词向量化工具,https://radimrehurek ...

  5. NLP:Gensim库之word2vec

    Gensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量表达.它支持包括TF-IDF,LSA,LDA,和word2vec在内的多种主题模型算法, ...

  6. word2vec参数理解

    之前写了对word2vec的一些简单理解,实践过程中需要对其参数有较深的了解: class gensim.models.word2vec.Word2Vec(sentences=None,size=10 ...

  7. word2vec模型评估方案

    1.word2vec参数详解 · sentences:可以是一个·ist,对于大语料集,建议使用BrownCorpus,Text8Corpus或·ineSentence构建.· sg: 用于设置训练算 ...

  8. 语义分析之ansj_seg+word2vec的使用

    语义分析,我是一个初学者,有很多东西,需要理论和实践结合后,才能理解的相对清楚. 今天,我就在语义理解中基于背景语料的情况,实现语义上下文的预测,比如,我说“王宝强”,你会想到什么?别告诉没有“马蓉” ...

  9. 机器学习之路: python 实践 word2vec 词向量技术

    git: https://github.com/linyi0604/MachineLearning 词向量技术 Word2Vec 每个连续词汇片段都会对后面有一定制约 称为上下文context 找到句 ...

随机推荐

  1. Sql语句之查询所有学生所有科目分数及总分

    昨天练Sql语句,数据库建了四个表分别是,学生表,课程表,成绩表以及教师表(教师表不在讨论范围),突然想到以前高中时代老师手上的那张成绩表,然后我就寻思着能不能用Sql语句把表打印出来,以下是我的思考 ...

  2. 获取设备、APP的一些信息

    获取设备的一些信息: UIDevice *device = [UIDevice currentDevice]; @property(nonatomic,readonly,strong) NSStrin ...

  3. Z - 不容易系列之(3)―― LELE的RPG难题

    Description          人称“AC女之杀手”的超级偶像LELE最近忽然玩起了深沉,这可急坏了众多“Cole”(LELE的粉丝,即"可乐"),经过多方打探,某资深C ...

  4. html 调用 activeX(c++)

    1.新建MFC ActiveX 2.添加方法 3.找到add函数编写代码 4.在test.idl中找到最后一个uuid 5.编译工程,会自动注册控件 6.html中的代码 <html> & ...

  5. source install MacPorts--checking for Tcl configuration... configure: error: Can't find Tcl configuration definitions

    If you installed MacPorts using the package installer, skip this section. To install MacPorts from t ...

  6. nginx---Beginner's Guide

    一 启动 nginx -s signal Where signal may be one of the following: stop — fast shutdown quit — graceful ...

  7. [python] 如何用python操作Excel

    直接上代码: from openpyxl import Workbook from openpyxl.cell import get_column_letter wb = Workbook() des ...

  8. 把自定义控件集成到Qt Designer中

    要想在Qt Designer中使用自定义控件,必须要使Qt Designer能够知道我们的自定义控件的存在.有两种方法可以把新自定义控件的信息通知给Qt Designer:“升级(promotion) ...

  9. android 自定义AlertDialog(一段)

    java: final AlertDialog dialog = new AlertDialog.Builder(mContext) .create(); dialog.setCancelable(f ...

  10. 一次rman恢复的实验

    本文主要针对备份和恢复数据文件,具体rman知识点查阅我的另一篇文章:http://blog.csdn.net/perfect_db/article/details/8765022 首先看看数据文件的 ...