Codeforces Round #369 (Div. 2) C. Coloring Trees DP
ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the park where n trees grow. They decided to be naughty and color the trees in the park. The trees are numbered with integers from 1 to n from left to right.
Initially, tree i has color ci. ZS the Coder and Chris the Baboon recognizes only m different colors, so 0 ≤ ci ≤ m, where ci = 0 means that tree i is uncolored.
ZS the Coder and Chris the Baboon decides to color only the uncolored trees, i.e. the trees with ci = 0. They can color each of them them in any of the m colors from 1 to m. Coloring the i-th tree with color j requires exactly pi, j litres of paint.
The two friends define the beauty of a coloring of the trees as the minimum number of contiguous groups (each group contains some subsegment of trees) you can split all the n trees into so that each group contains trees of the same color. For example, if the colors of the trees from left to right are 2, 1, 1, 1, 3, 2, 2, 3, 1, 3, the beauty of the coloring is 7, since we can partition the trees into 7contiguous groups of the same color : {2}, {1, 1, 1}, {3}, {2, 2}, {3}, {1}, {3}.
ZS the Coder and Chris the Baboon wants to color all uncolored trees so that the beauty of the coloring is exactly k. They need your help to determine the minimum amount of paint (in litres) needed to finish the job.
Please note that the friends can't color the trees that are already colored.
The first line contains three integers, n, m and k (1 ≤ k ≤ n ≤ 100, 1 ≤ m ≤ 100) — the number of trees, number of colors and beauty of the resulting coloring respectively.
The second line contains n integers c1, c2, ..., cn (0 ≤ ci ≤ m), the initial colors of the trees. ci equals to 0 if the tree number i is uncolored, otherwise the i-th tree has color ci.
Then n lines follow. Each of them contains m integers. The j-th number on the i-th of them line denotes pi, j (1 ≤ pi, j ≤ 109) — the amount of litres the friends need to color i-th tree with color j. pi, j's are specified even for the initially colored trees, but such trees still can't be colored.
Print a single integer, the minimum amount of paint needed to color the trees. If there are no valid tree colorings of beauty k, print - 1.
3 2 2
0 0 0
1 2
3 4
5 6
10
In the first sample case, coloring the trees with colors 2, 1, 1 minimizes the amount of paint used, which equals to 2 + 3 + 5 = 10. Note that 1, 1, 1 would not be valid because the beauty of such coloring equals to 1 ({1, 1, 1} is a way to group the trees into a single group of the same color).
In the second sample case, all the trees are colored, but the beauty of the coloring is 3, so there is no valid coloring, and the answer is - 1.
In the last sample case, all the trees are colored and the beauty of the coloring matches k, so no paint is used and the answer is 0.
题意:
给你n棵树
每个树上可能已经填了颜色,可能没有填颜色(0)
现在告诉你有m种颜色,让分成 K 块
给你每棵树填每种颜色的花费
问你分成K块的最小花费
题解:
设定dp[i][j][k]表示第i棵树 时 填的j颜色 分成k块 的 最小花费
n^4去转移不会超时
可是 我们可以 把最后两维放到 线段树优化
这样就是n^3 log
#include<bits/stdc++.h>
using namespace std; #pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 1e2+, M = 1e6+, mod = 1e6+; const LL inf = 1e15; int n,k,m; LL a[N]; LL dp[N][N][N];
LL mi[N<<][N<<];
LL v[N][N]; void build(int K,int i,int ll,int rr) {
mi[K][i] = inf;
if(ll == rr) {
return ;
}
build(K,ls,ll,mid);
build(K,rs,mid+,rr);
} void update(int K,int i,int ll,int rr,int x,LL c) {
if(ll == rr && x == ll) {
mi[K][i] = c;return ;
}
if(x <= mid) update(K,ls,ll,mid,x,c);
else if(x > mid) update(K,rs,mid+,rr,x,c);
mi[K][i] = min(mi[K][ls],mi[K][rs]);
} LL ask(int K,int i,int ll,int rr,int l,int r,int op,int x) {
if(l > r) return inf;
if(ll == l && r == rr) {
return mi[K][i];
}
if(r <= mid) return ask(K,ls,ll,mid,l,r,op,x);
else if(l > mid) return ask(K,rs,mid+,rr,l,r,op,x);
else return min(ask(K,ls,ll,mid,l,mid,op,x), ask(K,rs,mid+,rr,mid+,r,op,x));
} int main ( ) {
scanf("%d%d%d",&n,&m,&k);
for(int i = ; i <= n; ++i) scanf("%I64d",&a[i]);
for(int i = ; i <= n; ++i) {
for(int j = ; j <= m; ++j) scanf("%I64d",&v[i][j]);
} for(int i = ; i <= ; ++i) {
for(int j = ; j <= ; ++j) {
for(int K = ; K <= ; ++K) dp[i][j][K] = inf;
}
} for(int i = ; i <= k; i++) {
build(i,,,m);
} if(a[] == ) {
for(int i = ; i <= m; i++) dp[][i][] = v[][i];
} else dp[][a[]][] = ; for(int i = ; i <= m; ++i) {
update(,,,m,i,dp[][i][]);
} for(int i = ; i <= n; ++i) {
if(a[i] == ) {
for(int j = ; j <= m; ++j) {
for(int K = ; K <= k; ++K){
if(K != ) {
if(j!=&&j!=m)dp[i][j][K] = min(min(ask(K-,,,m,,j-,i,j),ask(K-,,,m,j+,m,i,j))+v[i][j],dp[i][j][K]);
else if(j == ) dp[i][j][K] = min(ask(K-,,,m,,m,i,j)+v[i][j],dp[i][j][K]);
else dp[i][j][K] = min(ask(K-,,,m,,m-,i,j)+v[i][j],dp[i][j][K]);
}
dp[i][j][K] = min( dp[i][j][K],dp[i-][j][K] + v[i][j]);
}
}
}
else {
for(int K = ; K <= k; ++K)
{
if(K != ) {
if(a[i] == ) dp[i][a[i]][K] = min(ask(K-,,,m,,m,i,),dp[i][a[i]][K]);
else if(a[i] == m) dp[i][a[i]][K] = min(ask(K-,,,m,,m-,i,),dp[i][a[i]][K]);
else dp[i][a[i]][K] = min(min(ask(K-,,,m,,a[i]-,i,),ask(K-,,,m,a[i]+,m,i,)),dp[i][a[i]][K]);
}
dp[i][a[i]][K] = min(dp[i-][a[i]][K],dp[i][a[i]][K]);
}
} for(int K = ; K <= k; ++K) for(int j = ; j <= m; j++) update(K,,,m,j,dp[i][j][K]);
} LL ans = ask(k,,,m,,m,n+,);
if( ans >= inf) puts("-1");
else
printf("%I64d\n",ans);
}
n^3 log
n^4:
#include<bits/stdc++.h>
using namespace std;
typedef long long int uli;
const uli oo=1e15;
uli f[][][];
uli p[][];
int color[];
int main(){
int n,m,k;
scanf("%d %d %d",&n,&m,&k);
for(int i=;i<n;i++)scanf("%d",color+i);
for(int i=;i<n;i++)
for(int j=;j<=m;j++)
scanf("%lld",&p[i][j]);
for(int i=;i<n;i++)if(color[i]!=)p[i][color[i]]=;
int rw=;
for(int c=;c<;c++){
for(int q=;q<;q++)f[rw][c][q]=oo;
f[rw][c][]=;
}
for(int i=;i<n;i++){
rw^=;
int from=,to=m;
if(color[i]!=)from=to=color[i];
for(int c=;c<=m;c++){
for(int q=;q<=k;q++){
f[rw][c][q]=oo;
for(int x=from;x<=to;x++){
int nq=q-(x!=c);
if(nq>=)f[rw][c][q]=min(f[rw][c][q],f[rw^][x][nq]+p[i][x]);
}
}
}
}
uli ans=f[rw][][k];
if(ans>=oo)ans=-;
printf("%lld\n",ans);
return ;
}
Codeforces Round #369 (Div. 2) C. Coloring Trees DP的更多相关文章
- Codeforces Round #369 (Div. 2) C. Coloring Trees(dp)
Coloring Trees Problem Description: ZS the Coder and Chris the Baboon has arrived at Udayland! They ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees 动态规划
C. Coloring Trees 题目连接: http://www.codeforces.com/contest/711/problem/C Description ZS the Coder and ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees (DP)
C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces Round #369 (Div. 2)---C - Coloring Trees (很妙的DP题)
题目链接 http://codeforces.com/contest/711/problem/C Description ZS the Coder and Chris the Baboon has a ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees(简单dp)
题目:https://codeforces.com/problemset/problem/711/C 题意:给你n,m,k,代表n个数的序列,有m种颜色可以涂,0代表未涂颜色,其他代表已经涂好了,连着 ...
- Codeforces Round #369 (Div. 2)-C Coloring Trees
题目大意:有n个点,由m种颜料,有些点没有涂色,有些点已经涂色了,告诉你每个点涂m种颜色的价格分别是多少, 让你求将这n个点分成k段最少需要多少钱. 思路:动态规划,我们另dp[ i ][ j ][ ...
- Codeforces Round #369 (Div. 2) C 基本dp+暴力
C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces Round #174 (Div. 1) B. Cow Program(dp + 记忆化)
题目链接:http://codeforces.com/contest/283/problem/B 思路: dp[now][flag]表示现在在位置now,flag表示是接下来要做的步骤,然后根据题意记 ...
- Codeforces #369 (Div. 2) C. Coloring Trees (3维dp
http://codeforces.com/group/1EzrFFyOc0/contest/711/problem/C https://blog.csdn.net/qq_36368339/artic ...
随机推荐
- 解决IDEA自动重置LanguageLevel和JavaCompiler版本的问题
使用IDEA时,导入的Maven项目默认的LanguageLevel和JavaCompiler都是1.5,1.5的情况下连最简单的@Override注解都不支持,所以项目可能出现一堆错. 虽然在项目上 ...
- centos locate搜索工具
locate搜索工具 [root@localhost ~]# yum install mlocate [root@localhost ~]# locate passwd locate: can not ...
- 和我一起学python,控制语句 (life is short ,we need python)
控制语句 if/elif/else if语句和一般编程语言一样,条件为true 执行 如: if true : print 'true' <----if.else下对齐,要使用相 ...
- Windows下安装node
1.安装node及npm Windows下安装软件都是傻瓜式安装,首先登陆官网(https://nodejs.org/en/)下载对应的node程序,然后双击进行安装.安装过程基本上是点击'Next' ...
- ABAP ALV单个单元格状态编辑
*&---------------------------------------------------------------------* *& Report ZPPR0024 ...
- XP共享连接数限制
- Linux Free命令各数字含义及Buffer和Cache的区别
Linux Free命令各数字含义及Buffer和Cache的区别 Free 命令的各数字含义 命令演示 [root@vm1 ~]# free total used free shared buffe ...
- Python--set常用操作函数
python提供了常用的数据结构,其中之一就是set,python中的set是不支持索引的.值不能重复.无需插入的容器. 简单记录下set常用的操作函数: 1.新建一个set: set("H ...
- noip2016复习
明天的复习任务 矩阵乘法 优先队列(老忘记怎么打) 二分图 K短路 单调队列(还是不太明白各种顺序) 扩展欧几里得 费马小定理求素数 哎呀,列了这么多,任重而道远啊-- 今夕是何夕,晚风过花庭-- 故 ...
- 对于大一学习计算机的新手(c/c++ )提出一些学习经验
对于刚刚上大一的新手,且是那种十分有上进的学生,在学习计算机的过程中必然会有一大堆的困惑,比如: 1 .如何学好编程(这与以往的应试教育完全不同,按照以往的那种学习方式,看书刷题不过是成为一个考试学霸 ...