传送门

Description

Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale have been forgotten. So now, in line with the educational nature of this contest, we will tell you the whole story: The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi , yi , zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have equal-sized bases couldn’t be stacked. Your job is to write a program that determines the height of the tallest tower the babylonians can build with a given set of blocks.

Input

The input file will contain one or more test cases. The first line of each test case contains an integer n, representing the number of different blocks in the following data set. The maximum value for n is 30. Each of the next n lines contains three integers representing the values xi , yi and zi . Input is terminated by a value of zero (0) for n.

Output

For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format ‘Case case: maximum height = height’

Sample Input

1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0

Sample Output

Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342

思路

  题意:

  有n(n≤30)中立方体,每种都有无穷多个。要求选一些立方体摞成一根尽量高的柱子(可以自行选择哪一条边作为高),使得每个立方体的底面长宽分别严格小于它下方立方体的底面长宽。

  思路:

  矩形嵌套的变形题,将题目信息转化为矩形嵌套来做。

#include<bits/stdc++.h>
using namespace std;
const int maxn = 35;
struct Node{
	int len,wid,hei;
}node[maxn*3];

bool cmp(struct Node x,struct Node y)
{
	if (x.len == y.len)	return x.wid < y.wid;
	else	return x.len < y.len;
}

int main()
{
	int N,Case = 0;
	while (~scanf("%d",&N) && N)
	{
		int x,y,z,p = 0,res = 0;
		int dp[maxn*3];
		for (int i = 0;i < N;i++)
		{
			scanf("%d%d%d",&x,&y,&z);
			node[p].len = x>y?x:y;node[p].wid = x<y?x:y;node[p++].hei = z;
			node[p].len = x>z?x:z;node[p].wid = x<z?x:z;node[p++].hei = y;
			node[p].len = y>z?y:z;node[p].wid = y<z?y:z;node[p++].hei = x;
		}
		sort(node,node+p,cmp);
		for (int i = 0;i < p;i++)
		{
			dp[i] = node[i].hei;
			for (int j = 0;j < i;j++)
			{
				if (node[i].len > node[j].len && node[i].wid > node[j].wid && dp[i] < dp[j] + node[i].hei)
				{
					dp[i] = dp[j] + node[i].hei;
				}
			}
			res = max(res,dp[i]);
		}
		printf("Case %d: maximum height = %d\n",++Case,res);
	}
	return 0;
}

  

// UVa437 The Tower of Babylon
// Rujia Liu
// 算法:DAG上的最长路,状态为(idx, k),即当前顶面为立方体idx,其中第k条边(排序后)为高
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

#define REP(i,n) for(int i = 0; i < (n); i++)

const int maxn = 30 + 5;
int n, blocks[maxn][3], d[maxn][3];

void get_dimensions(int* v, int b, int dim)
{
    int idx = 0;
    REP(i,3) if(i != dim) v[idx++] = blocks[b][i];
}

int dp(int i, int j)
{
    int& ans = d[i][j];
    if(ans > 0) return ans;
    ans = 0;
    int v[2], v2[2];
    get_dimensions(v, i, j);
    REP(a,n) REP(b,3)
    {
        get_dimensions(v2, a, b);
        if(v2[0] < v[0] && v2[1] < v[1]) ans = max(ans, dp(a,b));
    }
    ans += blocks[i][j];
    return ans;
}

int main()
{
    int kase = 0;
    while(scanf("%d", &n) == 1 && n)
    {
        REP(i,n)
        {
            REP(j,3) scanf("%d", &blocks[i][j]);
            sort(blocks[i], blocks[i]+3);
        }
        memset(d, 0, sizeof(d));
        int ans = 0;
        REP(i,n) REP(j,3) ans = max(ans, dp(i,j));
        printf("Case %d: maximum height = %d\n", ++kase, ans);
    }
    return 0;
}

  

UVa 437 The Tower of Babylon(经典动态规划)的更多相关文章

  1. UVa 437 The Tower of Babylon

    Description   Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...

  2. UVa 437 The Tower of Babylon(DP 最长条件子序列)

     题意  给你n种长方体  每种都有无穷个  当一个长方体的长和宽都小于还有一个时  这个长方体能够放在还有一个上面  要求输出这样累积起来的最大高度 由于每一个长方体都有3种放法  比較不好控制 ...

  3. UVA 437 The Tower of Babylon(DAG上的动态规划)

    题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...

  4. UVA 437 "The Tower of Babylon" (DAG上的动态规划)

    传送门 题意 有 n 种立方体,每种都有无穷多个. 要求选一些立方体摞成一根尽量高的柱子(在摞的时候可以自行选择哪一条边作为高): 立方体 a 可以放在立方体 b 上方的前提条件是立方体 a 的底面长 ...

  5. DP(DAG) UVA 437 The Tower of Babylon

    题目传送门 题意:给出一些砖头的长宽高,砖头能叠在另一块上要求它的长宽都小于下面的转头的长宽,问叠起来最高能有多高 分析:设一个砖头的长宽高为x, y, z,那么想当于多了x, z, y 和y, x, ...

  6. UVA - 437 The Tower of Babylon(dp-最长递增子序列)

    每一个长方形都有六种放置形态,其实可以是三种,但是判断有点麻烦直接用六种了,然后按照底面积给这些形态排序,排序后就完全变成了LIS的问题.代码如下: #include<iostream> ...

  7. UVA 437 The Tower of Babylon巴比伦塔

    题意:有n(n≤30)种立方体,每种有无穷多个.要求选一些立方体摞成一根尽量高的柱子(可以自行选择哪一条边作为高),使得每个立方体的底面长宽分别严格小于它下方立方体的底面长宽. 评测地址:http:/ ...

  8. UVA437-The Tower of Babylon(动态规划基础)

    Problem UVA437-The Tower of Babylon Accept: 3648  Submit: 12532Time Limit: 3000 mSec Problem Descrip ...

  9. UVA 427 The Tower of Babylon 巴比伦塔(dp)

    据说是DAG的dp,可用spfa来做,松弛操作改成变长.注意状态的表示. 影响决策的只有顶部的尺寸,因为尺寸可能很大,所以用立方体的编号和高的编号来表示,然后向尺寸更小的转移就行了. #include ...

随机推荐

  1. Cocos2d-x 3.4在AndroidStudio上编译配置

    转载请标明出处:http://www.cnblogs.com/studweijun/p/4320778.html 1.准备好以下文件 1) AndroidStudio:  https://dl.goo ...

  2. 数据字典生成工具之旅(8):SQL查询表的约束默认值等信息

    上一篇代码生成工具里面已经用到了读取表结构的SQL,这篇将更加详细的介绍SQL SERVER常用的几张系统表和视图! 阅读目录 系统表视图介绍 实际应用 本章总结 工具源代码下载 学习使用 回到顶部 ...

  3. Qt中的qreal

    在桌面操作系统中(比如Windows, XNix等)qreal其实就是double类型:而在嵌入设备系统中,qreal则等同于float 类型.

  4. CUDA1-hello world

    电脑配置:windows7 sp1 64bit  + CUDA6.5 + GeForce GTX780 Ti 显卡中的GPU因为多核可以处理很多相同的操作,相比较来说cpu就像个健全的手,什么活都能干 ...

  5. 怎样修改 Openstack Horizon(Dashboard)的显示界面 (二)

    上一篇文章介绍了 Dashboard 的基本结构框架,那接下来的问题就是如何在这个框架中加入我们自己想要的内容了.在真正动手之前,让我们先来看看官方的页面是怎么做出来的.首先我们进入 /usr/sha ...

  6. MD5算法的C语言实现

    1 #include <stdio.h> #include <stdint.h> #include <stdlib.h> #include <string.h ...

  7. Groovy与Gradle在Android中的应用

    大家都知道, Android Studio 的编译构建,是基于Gradle的, 而Gradle又是基于Groovy, Groovy又是基于Java的 Android Studio 的gradle 本身 ...

  8. hihocoder 1260

    之前做过的oj, acm题目忘了很多了, 又要开始要刷题了, go on! #1260 : String Problem I 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描 ...

  9. linux 安装samba

    1. yum -y install samba 2. 配置 vi /etc/samba/smb.conf [global] 下面的 修改 workgroup = MYGROUPsecurity = s ...

  10. springMVC自定义注解实现用户行为验证

    最近在进行项目开发的时候需要对接口做Session验证 1.自定义一个注解@AuthCheckAnnotation @Documented @Target(ElementType.METHOD) @I ...