【BZOJ】1406: [AHOI2007]密码箱
http://www.lydsy.com/JudgeOnline/problem.php?id=1406
题意:求$0<=x<n, 1<=n<=2,000,000,000, 且x^2 \equiv 1 \pmod{n}$的所有$x$
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
set<ll> s;
int main() {
ll n; scanf("%lld", &n);
for(int i=1; i*i<=n; ++i) if(n%i==0) {
ll a=i, b=n/i, x;
for(int k=0; b*k+1<n ; ++k) {
x=b*k+1; if((x+1)%a==0) s.insert(x);
}
for(int k=1; b*k-1<n; ++k) {
x=b*k-1; if((x-1)%a==0) s.insert(x);
}
}
for(set<ll>::iterator it=s.begin(); it!=s.end(); ++it)
printf("%lld\n", *it);
return 0;
}
好神的题= =
首先化简容易得到$(x+1)(x-1) = kn$,于是就翻题解了= =,神题不解释= =
于是得到$n | (x+1)(x-1)$
设$n=ab$,那么由 $ ab | (x+1)(x-1) \Rightarrow \left( a|(x+1) \land b|(x-1) \right) \lor \left( a|(x-1) \land b|(x+1) \right) $
我发现我无法证明其充分性怎么办QAQ
于是$O(\sqrt{n}ln \sqrt{n})$就能搞定啦= =
【BZOJ】1406: [AHOI2007]密码箱的更多相关文章
- BZOJ 1406: [AHOI2007]密码箱
二次联通门 : BZOJ 1406: [AHOI2007]密码箱 /* BZOJ 1406: [AHOI2007]密码箱 数论 要求 x^2 ≡ 1 (mod n) 可以转换为 x ^ 2 - k * ...
- bzoj 1406: [AHOI2007]密码箱 二次剩餘
1406: [AHOI2007]密码箱 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 701 Solved: 396[Submit][Status] D ...
- BZOJ 1406: [AHOI2007]密码箱( 数论 )
(x+1)(x-1) mod N = 0, 枚举N的>N^0.5的约数当作x+1或者x-1... ------------------------------------------------ ...
- BZOJ 1406: [AHOI2007]密码箱 exgcd+唯一分解定理
推出来了一个解法,但是感觉复杂度十分玄学,没想到秒过~ Code: #include <bits/stdc++.h> #define ll long long #define N 5000 ...
- 1406: [AHOI2007]密码箱
1406: [AHOI2007]密码箱 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1591 Solved: 944[Submit][Status][ ...
- BZOJ_1406_[AHOI2007]密码箱_枚举+数学
BZOJ_1406_[AHOI2007]密码箱_枚举+数学 Description 在一次偶然的情况下,小可可得到了一个密码箱,听说里面藏着一份古代流传下来的藏宝图,只要能破解密码就能打开箱子,而箱子 ...
- 洛谷——P4296 [AHOI2007]密码箱
P4296 [AHOI2007]密码箱 密码x大于等于0,且小于n,而x的平方除以n,得到的余数为1. 求这个密码,$1<=n<=2,000,000,000$ 暴力枚举,数据有点儿水$O( ...
- 【BZOJ 1406】 [AHOI2007]密码箱
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] \(x^2%n=1\) \(x^2-1 = k*n\) \((x+1)*(x-1) % n == 0\) 设\(n=a*b\) 对于 ...
- BZOJ 1406 密码箱
直接两层枚举就行了. 避免排序可以用set. #include<iostream> #include<cstdio> #include<cstring> #incl ...
随机推荐
- 重温WCF之WCF传输安全(十三)(4)基于SSL的WCF对客户端采用证书验证(转)
转载地址:http://www.cnblogs.com/lxblog/archive/2012/09/20/2695397.html 前一篇我们演示了基于SSL的WCF 对客户端进行用户名和密码方式的 ...
- Oracle ASM
一 Oracle ASM簡介 Oracle 10g推出的管理磁盤的新方式,用於取代LVM技術.主要用于RAC環境 二 Oracle ASM的配置安裝 1.安裝asm包 RedHat Linux5.x ...
- C# DateTime时间格式转换为Unix时间戳格式
double ntime=dateTimeToUnixTimestamp(DateTime.Now); long g1 = GetUnixTimestamp(); long g2 = ConvertD ...
- PHPCMS V9 栏目列表调用文章点击量及评论数量方法
很多朋友在用Phpcms做站时,具体需要在列表页.首页调用文章列表调用文章的点击量和评论排行,那么怎么才能做到在Phpcms v9首页.频道页.列表页.推荐位等页面获取文章浏览量和评论统计呢? 原因起 ...
- phpcms v9实现wap单页教程
下面以添加“关于我们”这一单页为例作phpcms V9 wap手机门户添加单页的教程说明: 步骤一:复制phpcms\templates\default\wap下的maps.html,粘贴重命名为ab ...
- hdu 4273 2012长春赛区网络赛 三维凸包中心到最近面距离 ***
新模板 /* HDU 4273 Rescue 给一个三维凸包,求重心到表面的最短距离 模板题:三维凸包+多边形重心+点面距离 */ #include<stdio.h> #include&l ...
- 第二十篇:在SOUI中使用分层窗口
从Windows 2K开始,MS为UI开发引入了分层窗口这一窗口风格.使用分层窗口,应用程序的主窗口可以是半透明,也可以是逐点半透明(即每一个像素点的透明度可以不同). 可以说,正是因为有了分层窗口, ...
- set[c++]
#include <iostream> using namespace std; #include <set> int main(int argc, const char * ...
- lr_save_string 和 sprintf 的使用
lr_save_string 和 sprintf 的使用 一.lr_save_string 使用介绍1.该函数主要是将程序中的常量或变量保存为lr中的参数.格式: //将常量保存为参数 lr_save ...
- Uva674 完全背包求方案数
记忆化搜索.注意输入n的位置,否则Tle. dp[i][j]表示用前j种硬币组成i分钱时的种类数 那么状态转移方程是:dp[i][j]+=DP(i-k*v[j],j-1) #include<io ...