【BZOJ】2216: [Poi2011]Lightning Conductor
题意
给一个长度为\(n\)的序列\(a_i\),对于每个\(1 \le i \le n\),找到最小的非负整数\(p\)满足 对于任意的\(j\), \(a_j \le a_i + p - \sqrt{|i-j|}\)
分析
我们正反dp一下。
题解
令\(d(i)\)表示最小的\(p\),则\(d(i) = max(a_j+\sqrt{i-j})-a_i, j < i\)。
其实发现这是有决策单调性的。即对于决策\(j\)和\(k(j > k)\),如果\(j\)在\(i\)时比\(k\)在\(i\)优了,则对于所有\(x > i\),决策\(j\)都比决策\(k\)优。所以我们用一个栈来维护一下最优区间即可,更新区间用二分,复杂度\(O(nlogn)\)。
#include <bits/stdc++.h>
using namespace std;
typedef double lf;
inline int getint() {
int x=0, c=getchar();
for(; c<48||c>57; c=getchar());
for(; c>47&&c<58; x=x*10+c-48, c=getchar());
return x;
}
const int N=500005;
struct ip {
int id, l, r;
}q[N];
int n, a[N];
inline lf cal(int j, int i) {
return a[j]-a[i]+sqrt(i-j);
}
void dp(lf *f) {
ip *fr=q, *ta=q;
*ta++=(ip){1, 2, n};
for(int i=2; i<=n; ++i) {
for(; fr+1!=ta && (fr+1)->l<=i; ++fr);
f[i]=cal(fr->id, i);
++fr->l;
for(; fr!=ta && fr->l>fr->r; ++fr);
for(; fr!=ta && cal((ta-1)->id, (ta-1)->l)<cal(i, (ta-1)->l); --ta);
if(fr!=ta) {
ip *b=ta-1;
int l=b->l, r=b->r;
while(l<=r) {
int mid=(l+r)>>1;
if(cal(b->id, mid)<cal(i, mid)) {
r=mid-1;
}
else {
l=mid+1;
}
}
++r;
if(r<=n) {
b->r=r-1;
*ta++=(ip){i, r, n};
}
}
else {
*ta++=(ip){i, i+1, n};
}
}
}
lf f[N], g[N];
int main() {
n=getint();
for(int i=1; i<=n; ++i) {
a[i]=getint();
}
dp(f);
reverse(a+1, a+1+n);
dp(g);
for(int i=1; i<=n; ++i) {
printf("%d\n", max(0, int(ceil(max(f[i], g[n-i+1])))));
}
return 0;
}
【BZOJ】2216: [Poi2011]Lightning Conductor的更多相关文章
- [bzoj 2216] [Poi2011] Lightning Conductor
[bzoj 2216] [Poi2011] Lightning Conductor Description 已知一个长度为n的序列a1,a2,-,an. 对于每个1<=i<=n,找到最小的 ...
- bzoj 2216: [Poi2011]Lightning Conductor【决策单调性dp+分治】
参考:https://blog.csdn.net/clove_unique/article/details/57405845 死活不过样例看了题解才发现要用double.... \[ a_j \leq ...
- bzoj 2216 [Poi2011]Lightning Conductor——单调队列+二分处理决策单调性
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2216 那个关于位置的代价是带根号的,所以随着距离的增加而增长变慢:所以靠后的位置一旦比靠前的 ...
- 【BZOJ】2277: [Poi2011]Strongbox
题意 有一个密码箱,\(0\)到\(n-1\)中的某些整数是它的密码.如果\(a\)和\(b\)都是它的密码,那么\((a+b)%n\)也是它的密码(\(a,b\)可以相等).某人试了\(k\)次密码 ...
- 【BZOJ】2212: [Poi2011]Tree Rotations
题意 给一棵\(n(1 \le n \le 200000)\)个叶子的二叉树,可以交换每个点的左右子树,要求前序遍历叶子的逆序对最少. 分析 可以发现如果交换非叶结点的左右子树,对子树内的交换无影响, ...
- 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性
[BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...
- 【BZOJ】【2738】&【Tsinsen】【A1333】矩阵乘法
整体二分+树状数组 过了[BZOJ][2527][POI2011]Meteors以后这题就没那么难啦~ 关键是[从小到大]依次插入数字,然后整体二分每个查询的第k大是在第几次插入中被插入的……嗯大概就 ...
- 【BZOJ】3052: [wc2013]糖果公园
http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...
- 【BZOJ】3319: 黑白树
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...
随机推荐
- HTML5学习之文件操作(九)
之前我们操作本地文件都是使用flash.silverlight或者第三方的activeX插件等技术,由于使用了这些技术后就很进行跨平台的处理,另外就是让我们的web应用依赖了第三方的插件,而不是很独立 ...
- Pyqt 音视频播放器
在寻找如何使用Pyqt做一个播放器时首先找到的是openCV2 openCV2 貌似太强大了,各种关于图像处理的事情它都能完成,如 读取摄像头.图像识别.人脸识别. 图像灰度处理 . 播放视频等,强 ...
- 使用.NET Framework的配置文件app.config
在一般的项目中,为了使你的代码更加灵活,更方便调整,减少不必要的hard code,我们都在config中添加许多配置信息,一般可以选择.NET自带的配置文件形式app.config或者web项目中的 ...
- C# jsonhelper
using System;using System.Collections.Generic;using System.Linq;using System.Web;using System.Web.Sc ...
- C语言判断文件是否存在(转)
int access(const char *filename, int amode); amode参数为0时表示检查文件的存在性,如果文件存在,返回0,不存在,返回-1. 这个函 ...
- java + jni + mingw实例开发(基于命令行窗口模式)
java+ jni + mingw 参考网址: http://wenku.baidu.com/link?url=9aQ88d2ieO7IgKLlNhJi5d3mb3xwzbezLPzSIX3ixz4_ ...
- 智能车学习(二十一)——浅谈CCD交叉以及横线摆放
一.CCD为何要交叉摆放? 首先使用横线摆放,CCD前瞻如果远一点,弯道丢线,再远一点直接窜道.所以需要很多很多代码的工作量,而且过弯的过程相当于没有任何的调节过程,就是一个偏差保持,或者 ...
- Linux学习笔记(14)文件系统管理
1 回顾分区与系统 (1)分区类型 Linux的分区一般包括主分区,扩展分区和逻辑分区.其中: 主分区最多只能分4个: 扩展分区只能有一个,也算作主分区的一种,即主分区加扩展分区最多有4个.但扩展分区 ...
- python logging模块 basicConfig配置文件
logging.basicConfig(level=log_level, format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s ...
- 从一个故障说说Java的三个BlockingQueue
原文地址:http://hellojava.info/?p=464 最近出了个故障,排查的时候耗费了很长的时间,回顾整个排查过程,经验主义在这里起了不好的作用,直接导致了整个故障排查的时间非常长,这个 ...