NYOJ题目111分数加减法
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsEAAAKBCAIAAAA5i+FPAAAgAElEQVR4nO3dPXLbugMv7LsJ916Iay3i3i4eNe68gjRq7Mp9Gs+ofRsXzqRVf4rMpIk7dSn/S9Bb8EMACJIgLDm28zzjOSeWSPBLFn4EQPL/HAAAlvs/f3sFAIAPSYYAAGrIEABADRkCAKghQwAANWQIAKCGDAEA1JAhAIAaMgQAUEOGAABqyBAAQA0ZAgCoIUMAADVkCACghgwBH8fL/d3lxeNz//vT4+XVj5eJGX7/WF3cXl7cPfwOX/3zcHV7eXF7ef0zN0/77ur+z2lWulnPi9vL65+l699Mn6428N7IEPBRtIHgtqmGX+7vLi/GKvs/D1e3q/s/UYY4Vtg/by5uLy9ub56yi8lniH5x0U+TQn7/WI2Wdjgc+gzxeBPO1QaFXFaQIeBjkCHgY+gaD4619fCVTl8HP/UZos0Nq/s/czX00gzRr8bjc5dO5n66RR9jRNA4cZAh4KOQIeADOMaFqAPi2DKRVrcv93eXV4/PfYa4/7G6aufNpoGbp3gp8c/q/k87V9f18HwdrkwfUH4syxDtvFGzytjPKftWgNOQIeC9C6v2+Hz9EJ7KH1sj2go+X3nng8LrMkQTWX48/24yxKD9oMk6k0M3ZAj4gGQIeM+OLQ25AHE4HOLat6lopzJE2zLRFtXOGw2uDPsyjv+ezhCdn22GuH8Ml3tz32eIpsBm6T9vxnor9GXAxyBDwPsVDi+YqlDD0JBrjTjO2wWO9pVmmvgUv80NYcvEazPE08+bZt7fSZgYaWCQIeBjkCHgXSscpdiORWgDRNR6ESaJY2lhRIiHZIZXbRwnmO/LuP55zBBp3d+8/vj89Ni3cLykKxOQIeBjkCHg3Rvvm8gOF+jr5sfnfJjop89W+RUZom+u+JFrh+izy+PNdbK4Pw9XtzdP0aiOiZ+py0eBv0CGgI+iCwRR43/uxZf7u+Aazm4UxdPj5dWPh+vbm+vHNg0kE0QFNjV9YYbos0i2LyMeyDl1UykZAj4WGQI+iq6ijarSTIYYvbwivsfU3Sp7t8rf4aDLY5vEVIbos0g/b9dn8XJ/18SRviklyQHP18l4iKAR5YS7DjgLGQI+iGQ4ZKvLEEHdPJsh8mMwW0+Pg7QxkyGO/57PEEky+BnduXJ4883fP1ZGRcD7JUPAxxDeDjKQbZxIL7gY3Hqy7zsY9Cxkbx41mSEGd8A89pKkfRn97beDiBCsfD96o1lK8ivw7sgQ8CH0tXLS9ZDNEGEVfv1z2AYQ3FIiaRhIrtQo68s4/Hm4unv4HUwTZ4hVOBji6bEvv1uNqN8kamjpynGDKXiXZAh4/8bvaT3WDnFI7/x4nDG9yiMMJekoy0GGuBifN3wc6PEazux4yWjAZtiYcTkYHDpcf+DdkCHgfRvehjL37mi2GP25+vHcl9xFgfTOUcE1GvMZYrJFJE4hj8+HuCNj/BrUkbwCvAcyBLxj+cGPw3wQjRiIbksVNAa0Qx0zXRJt4cfbRcRtFcEzsUbvUzkyXONwODw9ZodlxB0ZRffAcG0nvDMyBLxvL/d3I7dwiOr4wSz5Gre7oeTR83Uw5e8fq+hyzWMLR9G9rp8eF7UWPF8Xjpccf7IG8DfJEABADRkCAKghQwAANWQIAKCGDAEA1JAhAIAaMgQAUEOGAABqyBAAQA0Zgg9lt1mtt/v+1/123f2+26xy1tt9M1lvs4t+7V/tC9zsDvvtOlxMuPh2wn9A/caO7b60+LGJyo/XwSGDv0mG4J2Js0BaLWQqnum6qM8Qm13/Qv9rUETze/dOWiF1E1RUSMl9qWceMDH21Inxp1Gcz3kzxOAg5N6bO16HsxyyRnDggoeJJM8oyb44dtBHJg7tNmE8av4Y1tv9ICHPRzR4EzIE70wQCeYCw2z1kGaIdobR89rcG91XeG2FdHzi1KGpRVb3f5p/dE+p6P+dfXHi32e2YGNHGoHSOi+7f0eUHK+xIl95yNqHgyRP6Mju+ZHDMX/QJ3Zkt7q7zXE742yx20gRvBMyBO9MmiG2430UUfNBroqJM0R/pjp2Xntc9NKT2v12Xfat/nx9e3n98/D0GJ6Dts/Byr54OIy+nuy11Wbb74ambT+pbqOavqBeXZYhwq0f9jgtaDw6FB+vw5kO2e8fq9K4UBTp2oO+KEPst+s0NcTdN3poeBdkCN6ZmnaIpP4YvL7frpsaNu6xGMyw37eFnClDPD0en6wd5oCnx8uLx5vci8+H/MRpj0bf6N2tTPRLt+7B2ftmPvBUZ4h0/w4yRDPB+AiW0uN1OMshe7m/yz1NtDZDdAd9SYYYNDREGSIYBQR/mQzBOzMYDxHVIKMZoqAdYqZtfLyhfb3dvrJzPfPg7NNniKi9YVDhLK94ajNElGHaF9KBsJmCg9le1ff06kP2fH17eXUXDGho9nY8miE7xCFuH0oO+vTExx25Wq+HrQxp3tIIwTshQ/DOZNohgkrnFe0Qxwql/TWqXeKq5uQD9Bq/f6wublf3f/5GhjhWuKVJoi5DtMsLT/OjvZk9/w+7/g8VxytdyOE1h+z5OhrtmPx6OBzaNJCGgOyLx4NeNHHTnrRepzFBXwbvlAzBO5PvywhqhFdmiKBlI8wooye8q7D6evWFgk07+cPfyBD9b6VBYnmGaEqPx1/El13uNqv1ej0+zCU50545XoezHLJ0h//+sUrHV+b7O0Y6QZZM3B26NGkl12sMfoe/RIbgnakcD5GrgaIMEbxxbNdom4jDc+jgmsLjKyfLEO1J7XnGVBZkiPHXhiquyxgU2o1saN5oSpw7rOXH63CWQ5bW7scBDePTjL94yLdkzGSIQ5LHksygIYL3QobgnRmMh0jfnW+H6A3aIfqX++72TVrfZiukYPELB+g9XwfD6I4D/k99bWfJeIhNuOMKaqD66zISw2aiggxRcrwOZzlkwdWYh/bOHNc/X+7vjv0RXfdE9sXDyEEfmzjdEUk7Tp++kqs0RAjeBRmCd6amHWKurEydFASU4zdyXCG1ze2ZymxgokJ6egxvKxRW/8/XmdtGZV+ceP24pXPtEGE4KxoS8a4yRPZ4Hc5zyA6HaPxj3xo0PI5jB3fRxMmOGG75ertPxlS6KoP3QobgIwi+QuNO4mz1MJh6eGqaa92PB61FU2RutvD5vTpDHI9DOtox7DzKTLH4eB0cMvgrZAgg69WDP4DPToYAsmQIYIYMAQDUkCEAgBoyBABQQ4YAAGrIEABADRkCAKghQwAANWQI+Je093wsuPeDhzIAc2QI+LzCxywkz04fPncreSZD1rJM8fvHavYJEcAHJkPAP6Btd8jHhGOqaCNC8oCK6htWPj0eH0359ChGwKcjQ8Dntdv0Dx3rHv7YpoHM49K7R2tPyD0vcuYBmL0/D1e5p10DH5gMAZ9YGxXaeJCPCMGj1mvaIUozxM+bCxkCPhkZAj61Y3zY7II0MNIO0WeIV42DyHi5v7u8uHv4/cpigHdFhoDPLWwnKMwQJ/f7x0ojBHxCMgR8csEVGNkxlW2W2G/Xq81u/OKM6nwhQMCnJUPA59akgiYoTLVDRJd9Ru/tNkUDHrIECPjMZAj4zJo80LQxTGaIODjst+vVersvGTA5MYnrOeGTkyHg8+qyQ3R1Z7abIml72G/XpZ0Y4xni+fp4g6nu5/H5tFsI/E0yBHxag1GSo8MmmzeOESO5tPN012cAn4kMAQDUkCEAgBoyBABQQ4YAAGrIEABADRkCAKghQwAANWQIAKCGDAEA1JAhAIAaMgQAUEOGAABqyBAAQA0ZAgCoIUMAADVkCACghgwBANSQIQCAGjIEAFBDhgAAasgQAEANGQIAqCFDAAA1ZAgAoEZJhnh6vLy4vbz+2f3+8+bi9vLi8Tn99+FwOLzc3wVTDkv4eRNMDAB8WKfNEM2UF7c3T/kSnq9vLy9uLy/uHn6fbAsAgL9hUYb4/WN10YSA/M/N0+Hl/u4ybpmISmgaKmQIAPjwZjJE08zQ/Vz9eDm+mO/LOBz+PFzd3jz9ebl/nEgbXVEAwAd16vEQOV0QGY6TAAA+qpoMMSZotAgm7no3mvEQejEA4HNYliH+PFzNdU/kGi1WV3fBlK7LAIBPoCZDNG0JQS9GM9YylyGer28vLx6fk+syDIYAgA+vPENc3F5ePd4syhD9vwctGav7P+fcKgDg3KYzRHgx59J2iHbex+dDHCy6MtN7SAAAH8m5xkM8NuMr2/aGuIPj5f5OOwQAfHBnHA/x86Yf91B6ZQcA8FGceUzloAQA4HM4cYYIOjskBgD4zAoyRHOTqNX9n9nxEA/XfcKYnNKYSgD48GYyRB8FmhtDhe0QgbYd4vHh+k4yAIB/Q0lfBgBASoYAAGrIEABADRkCAKghQwAANWQIAKCGDAEA1JAhAIAaMgQAUKM0Q6xWq4lf/5aTrEZ1IefbCe9k9/Yq1md2luEEY7OUT1m46EJNORUbAvCPqMwQ2VeaFwu9dsXH12FpCf36VKznO4kRE2tefkQmlli4MuFkY7OEKzb2j9mlT69P+a4rLGd6Dc/3GQB454oyRFI3TNdYSwustio7TRybd1hxztZVr6yJC9dnqZI1z76+6GCVTDzcXbMFzq5P+YuF75ZPXLjok3yYAT6imgwxNsGqLEmc5Dt3QV242xzr2/V2f9hvN9t9WTmFleLrLarOp/89XeDSDFE+/dLKNTv9MBsNX8xOubTk4cT5gDaYRYYA6M1niCQZlJycnftbtfx7fLdpg0Nrv12vVqvVZpebcVGGmK5pFhlbh+m9mp1y+I/CZc1OXF7sxOsTNfT05oS/LgoBw3LKN2H6WMymDYBPbyZDZL/rZ786J75hX/8lW14HNIHhmBdau81qk12rku1aulYVVnM5YPjucJbk3RIT5U+/Xr6e4SurOBBMb85wxpL1mS68cD0rZgT4RyweU1nyjXm+b9Xpr/X417QNorffbrPtEEuXfhip1V7pHBli0b8X/br08zC2qoUZoiTBLM0QSabplyJDAEw7zXiIsYlnp1xqdlnHyfbbdT5C5CYuXuHCF+uUV1rJPjlhhli0n5O5Jo7XsFaeeDe7FSVbNzZZyfQl5UxPBvCvWTAeov91traYdsK1nypttBkisy3Ta54s7qwbOF1dzU45W+2V/Ht6WeWTTcyVfWs1qMtnj0W2qPK9sbSc7Cqd9gMA8IFUjoc4DFqAC5d32m/YqdLmMsTE+o8VO1HzFa1SgddkiLEtSurC7GRvkyGma9yJNR/++voMkaxA+PGe3ZPTmwnwj6hshziM11iLSnulydJ2m1VmRGUy72kzRN3WZWvWMRPLGjsWExliYq6xbSyfrGQ3Ts9SUmB1hshOM/HfZP9PrBLAP2LZ8zKS79Okbiup/E77nTtd2lhLRHO9xrCE6Tp7bHETNeVrNna2ap+uC6eLGv779RmisH59TWh44wxRtz4A/44F12WEWSH738JyalazsrTB7SAOh90mihXlsWAiK4y9Xr2xE3VeUv50fZl9ZdHWlbxbuNz+xekauqS+n3gxO/uiDBF+zicihTwBUDoeov914r8l3jZDHA59jugknRvnyxCFq1cyV1J1DdPJdMVZlwDK3x2bYHrPjG1mdmOzW51dytiuGCukJNAU7lIxAvjXLL5P5WHku76kkJN/yb6+wLFqJqlyJuqMimwxsTIlpU3UmofiCi+Z/jUZYqL2HZt++iM0Xa9PLGXsIzq796YXNCx2+tMC8I9YNh6iMfzCLfnqPMfX6wkzxN9agb6cwhxW+OKw5ltacuEE5Wt1yG3mWOCo+ERN/1pdzqLVkyGAf0pNhgAAkCEAgBoyBABQQ4YAAGrIEABADRkCAKghQwAANWQIAKCGDAEA1JAhAIAaMgQAUEOGAABqyBAAQA0ZAgCoIUMAADVkCACghgwBANSQIQCAGjIEAFBDhgAAasgQAEANGQIAqCFDAAA1CjLE8/Xt5cXdw+/k5Z83F7eXF7eX1z/zs/3+scrMBQB8DvMZ4s/D1e3lxeNz/OrL/d1lkyEGbx0OTYAYfxcA+PBmMkTX2ND9rO7/HA6Hw9Pj5cXt5dWP5yZJZJsiuhjRzgIAfCqz7RBPj2EOePn9pwsHTT9F00qRjxFdW4UeDQD4fAozxNXd5cXtzdPPh6u7y7hl4vhz9eMlnXkqYQAAH9lchni5v7u8uLu5bjLE4eX+Lh8Inh6bCRLP10ZFAMCnNJchnq9vLy8eH+7bDNGOhOh+bu5/rC7uHp5+rPKNDcfhFEZFAMDnUjKmshs72WeI4z+mM0QUODRFAMBnsuy6jLuH+/IM0Q6GuHnq/3G+zQAA3ljZfSpfKvoy2ikfnw/Ha0EHgy4BgA+qKkMUtEO0DRh920MzuNKoCAD4LM6TIdrLMcKGh+iuEgDAR1c1HmKmLyPsxQi0t5zSowEAn8Er2yGarorfQYboBkzkRlC65RQAfBqnzRBTAaIx97RPAOBjqMsQ14/dgzC6poWLu4ff6TjKvO5ZXC71BICPrCxDAADEZAgAoIYMAQDUkCEAgBoyBABQQ4YAAGrIEABADRkCAKghQwAANWQIAKCGDAEA1JAhAIAaJRliv12vt/v4td1mtVptdtmJV4Op84Vm55+eY1VQdjPdRNndoneb1dBmdwi2eLdpXkj/n5bXT51Vsj8A4IMpyBDD2r55ZTQF7DaTVXjxNOn0q83usNtMVslNfpisxguX3KSF3Wa12R2Dw367zsw6SBz5dwHgU5nJEMmZ9WYX14lj9eNcI8PYCXv+rL3JD9tuWfvtOpcCdpvsGX/UYDIya271cw0U6evr7S58ZbPRDgHAv2O+HSI6uR5U/uvNJhcjRrs6ujfHqtXdJnwr6b44Rpakv+JYYri2aaro3ytsGmg2Ntr4braoBO0QAPyLZjNE0JqfrSIPab3fvbLOj4sY6W04dhZ0c7UxZGqMQT6p9HOMZJimM2O016NZfps/tpv+pf12s+7TQLQrshli+XgPAPhQ5jJEnB6CCj2sLJOs0AaBbC262wxHUgS/Fo3IHBvR0MWC9XY/OgJzbAGD1pbmt+bltuDNbrfpw8KgteSYOPRmAPAvmMkQ0dn6ervdhCfcfQUb15BRDVwyXCLJENNn77kyd5uoos43Xay3+2S6pIh0uZl1abf1uA7dorRDAPDPKbs/RL4dIpsh4roznyIy/QgjGWK8xyGXBbrVS+ruY69ILvLEWxiVM1zWfrse9tJ0Re6363xbhCwBwCdUnCFWq9Vqs5lrhxgMl8z2HYyeo7dTH5PH+IDE+J2o5yJ4a3iviJIMkaxhFIQyA0K7IruhI4NmGRkCgE+o+NrOgnaIiYsuc/eXiH8Pyo37NooyxPDNsSaAogyx3+32wUoNWyiiYqMeDhkCgH/E0r6MbMf/+DUS/STxyftkvRo2XSzrywjnGAsYZe0Qh7DtZRVcBXIcr5lc27mbuPmlDAHAJ7Q8QzQd/s3Vjm0Fv9lM3z2yLSK5oUNJOChshwiKm7sCIi4xd6FJ7nZVgxTUJp3uHlPHO2BphwDgH+GZWwBADRkCAKghQwAANWQIAKCGDAEA1JAhAIAaMgQAUEOGAABqyBAAQI2yDDHyJIz8hGN3fG4K2Ac3dOyewRH9Py2vn3rmlpZTt7589Y0ii3fA2OPOg3Li97MPJUtmmbv3Zonx562XzNrfljS9m+fsDu+elpJ5VllO/Fj1E9zgM3tA2rIXrhsAsZIMMfnQirAmL/zaD576eQwO++06M+sgceTfbUvN1wOvv9l098Tv0hQx+dyQqKrdDnbteruf2d91tV0UGnJLmHyAyXq7P+z3+2gnl+3wbneUhZagzNNkiPxKJhliSaACoDebIYZPipiYbv6LOFs/ts/qjCvKXfhK8+SryQr1bO0QfWWWq9Xm81W//KDGCh50enxqeFhm/Fjz0d/KNyDcY9tNslPCurRI+hDXiR3erXBRPZ1ElNdX7CM5py170boBkCp49nemho+qpKiZoLCOa+qfqBYLHtWZeebW32qHiJu5s10RM9vbVlDJyXnzINCo5PRJqAW/LdDXk+02dBtWkv3ye7Bshwf1dDN1/FmKyo1KbD56ycPnD3F0GWlYCR/tFh+8eKLBugGwRPFzO4NT52EFEUy32uzGE0d30h2cDTf12GbdF5StgdKnjWfqtNO3QwRNMMeT4mydO7rsbO6Ze/UcfRndGg4OV8nOGc0QNTt8v4+eAT/6kNZ45dopoxm6QxEfkiCNBQXG05xorAXAP64oQ4StBPt93Gc9dZLezz1sNu9ebuvLza47KY/Pbtu3+8Txiiq1uKE+DDrxSXG4ETN10MgkY/toojX9FCfJ++16vW6bQ5oWkH5Td/2j3PvVHuSB852nh/s12QdJPd8dvuED2EcHqgQFJoXJEACnUNCXUVTvrjPf8McycqMIktfaeioel38scqodojQdFNcawypm+MrE9RSjNVQbTHZT67vebGa3ZmGFvt+um4UehzGkJaSRJ0kNySF87Q7P9jykRzXdi7t0FEfwYnaHBAWmB0uGADiFknaI8cH48XWZI6erg3aIfI3YnVOmJ5rHHutcW8RITTBzieViY5VOccZqr7ZYr/Nn9El9l1TYaQfEwk3bbdoGn9yQgvyOTBY63xBRvlZRXIn7iNLBEa/KEGGBMgTAORRkiLAC2e/34ffx1PUEvcxJbH7QW+Yy/a7I7kLQ+O3B4idqyddVGQsqnfFLAaKYNeyzOVuGGBQ7aBkavDC10P7fVTt82CvUj/ScbPrZb9erzWZT3JcRF5jsNBkC4BQKMkTBufbkNRlJTb/bhTdAGLZQRN/tUQ/HdIaIEshbtUPkJx1fdJTHkhPlIEPMt2osXsnXZYhcg0HdDg8jaLOpm122cys7fLJgTOWw2SVe/3CxQ9lPIQBZZddljKlphzgcm6U3Xdf8sY8+uR1F1JU/0QTfNJD35X2IDJG8/uoxldN3OVjcl5FGlrYP4nipau0OP5bddE9lavxuJbthNuH6zV/b2XYcDQfcpIsd3Umn/vgAfE41GSL4Fs8OXhhMlYyIH7ZHZ1qo+5GHm21wfWe2HSKq4CdO419xblmQIY7bO1H95C6GnVm74gyRvwIzKGa+HaJfndEbP6y66HDSHT696hWqC9QOAVDude0QvB8nr4ffzslP+7UjALwFGQIAqCFDAAA1ZAgAoIYMAQDUkCEAgBoyBABQQ4YAAGrIEABAjbIMMXL/oolb+UzfeHmht31EUrC0qUeFnGKFkic9nEr2AVajt56cfqLXPrhLaPCM1jPd06psh4eLHpkjeCrcYHvGHxU+P2n34cg8H250g2amPz4TZvyzMHXTrOlFLF1hgAVkiKmlTVW9r1+hiadOBreQHl/O2I2ysxFiMEW22s1uV/Ni9+jU46PBznBISnd42Y0oh/kieABHnDYGe2SzHeyjrqYfeUjY6CrMTB/czHz0vua527wHMWliEUtXGGCBuQxR8NDO1Sp4usXkRLVnQZ+yHaJfTGbrwpdGNj48rwyaM9K6sKs+0iMRPFR9vd23NUzmAd7DmnR1fFbmSQ7uYKvKdvjsY0T6HRQ0J/RJJDkrDyra9tV+piS8dFOUVsnR9P/f/B9JsKVjDyJZbzZR7pxepaUrDLDAqdoh0q+ozO+5E76yb7XmK/5YvxTMtXQxyRf2udsh4josbTSPF5v79k/n6H+Pqtbd5vigzXDS9sGWw9ppu9tud8FU0fomvQmz587ze2B4eBbu8KnIcXwM7ExdnT5CvmluiI5OtsIe6fOJjU4fTTL7Yer3S6bHY3oRBSsAUKs4Q0x9Ux+WZIh9XDOVdirHJ+bTc8XDDOZb3ePpz90OETyo9LiocBXSlodMS8Sgq354Jt28uF5nevmj9otkW3ab9NHZ7aNWt5v+gO+3m3VfSE2cig5huulzO7ybJs04Iz1CYx+V4XqPnsgXhtaSj3ISapKmjjAKTmSfE3wIAU7hzdsh0gJKvgaTyUaHxS0rdWz6ZbOXftv31UVY+cWL6s4xCzJEOhqz/3XYDnFIDl/Qe7He7pvfotP/6GHsx2U3hbSbu9l1Z+oVj8gcHL+5A5ovI+6LiAd+hiUX1sBjK3HyDNFP1q11v/bji0o+NwDvw5u3QxwqujNKKtV40Uu+bjM9CUu7rssMV3v4yn67Xv3fdX5zg6PQD+Tvfl8fM0Ru/eIxAUHjxLH+2u2CloZjVuhnH560tyuxuGrL74f1/1uyw5PPU/TZiuNmWTtEW0lPDusZCcFlU2ZWqNt37TpnPrcTEWjiCo75tQA4jVO2Q8zIdOjWtUO8RYZYdhVKrfyilm3u4XCYHA8RTBK0nJc0nyS5JamauqtKlu+TkizVvjpaeLCdw1GPUT/WzAb2U63X+bhx/r6Mw367Xm824a5sd/vI/jU+EngnZjJE2WUZ7VjxknaIYet9XV/G1FwVfRljGSJcVOaqhdd+j49fczEzpjJTzrE6ymeIw9SLExV2OjYiruiqUlW6rCDFle7wfjvzn9Dp8Y7DAaNNqkrbZobbP+4VfRlx99FwLMpk/gH4i8raIRrhcMjw39lpR755w5P+5pwsOWccqd8yQ/DGp08GC+w2m91s+dE5aTjEL/OVfzITTR7lbTXR+IXZDBEemKRCy1ZS+90uvIgjGb0R79DMS+PbPTqmsmiHB2MJMkFmt+nHgM7K7blkJ50wQ6TztNfZBnstN3glM19thig+RgDzijJEX4ccv2R3m/Sl4Sz5r6ljhdR8z+euh0jsNtHdgUYuXxhZyirsRRmbPrdSTa/Lpq+k3jBDdO9NfdkHlX7SRpNJAtFs2YEEMxX2KtoXx5o7CDDdIS/bT2FmCS/KKNjhzXTb7bqwJhzs5Wx9PxYCTtdxMOhY6XdlMBpiMFh0RN0qLTtGADOK+jKmvm5Gzu6Xf/Mu/Vo77/RRvVMxtK1iKSeRb4eINqC98qNIUKMHS8i8cmwUqNwp5Ts8OFGf3I5+OweHvShD5DPaaQ179mS7kjcAACAASURBVJLV1Q4BvGtL+jLOaqSb/q9NDwBMejcZAgD4UGQIAKCGDAEA1JAhAIAaMgQAUEOGAABqyBAAQA0ZAgCoIUMAADVkCACghgwBANSQIQCAGjIEAFBDhgAAasgQAEANGQIAqCFDAAA1ZAgAoIYMAQDUkCEAgBoyBABQQ4YAAGrIEABADRkCAKghQwAANWQIAKCGDAEA1JAhAIAaMgQAUGMuQ+y36/V2fzgcdpvVZpf5f37SrObdYM79dp0UMiz1dHabVVr4btOtVN5wBQGARkE7RFOv7zarzS6q/tPKdRA38u9Gb6eVdDTrfrseiSHhe9GiBvGln6EvOVPqQlIFAMxmiGyFu9lNVsSbTWk7RPtb0BQwyBCZZoL9dh1kgyY2dDNl2hraWfp4E5aoHQIAapWNh2hO74+1aVD3HtsXatoh0t/nM8Rusxq8eEwO2QwRNk7Esw4zxFg/jDYIAIjNZ4jdZrVarbfbTV8H77ebdRcI4tENwwyROZOfGPNwDBrdvONxIfvqSDtEvCZjOWGzS1NFsvbnHK0BAB/MTIaIzvCPfRib3W4z6Bxo3+vjxlhvxkRNHL817DBZbzaj3Rtd2fl2g9JeCRkCAMoU9WVkKuC2xaCtcruq+5XtEEnXQqYdYmKIRJ8hMoXvNqv1dtdlnH2+IaJvyNCXAQDzCtohcm0JbbW9Dmv0riNiv13n2yLa+nd0/EM6OuFkfRnNVkTDMIeRaDDfyKUfAMDhUNAOEdWuUS2fjm7sMkR3Fehg+GKUIZoaOkogq7imP9mYyoH5DNEupX25rFQA+KfM3mNqt9sH4xKiRoPklah7YzxDZMLC8XLN/XYdj2EYu7YzWZGZazvD5Ua3uQjfDAdcDm+C1Q4tnbgQFAD+KSXjIdq40Nz3oR/+0PVbhL0bzaCD9vqGfF9GGgz6UZrRC/2k+Y6UsPzBPaYGGSJt8hgZ9NBsXzR32jzRlKRJAgDKxkMMBilkXmmr4e3IzZzyIymHZY1Pe0pl4yHGXwYAPHMLAKgiQwAANWQIAKCGDAEA1JAhAIAaMgQAUEOGAABqyBAAQA0ZAgCoUZIhuodphXaD+0IfJ558rMQ+uJNl96jN6P+jU2clj+hqH5CVu5P17nDYbbrJpx7xPbZV+c3K31NzcJtOAPhsCjLE8IbPzSujN4Kee8xlU+12j/c8Pt4qf7PpOHHk3w1XMzNl+9Z+v4sf15UrJqN9gkc2F7RlZp4kKkMA8LmVPC8jPkUPa9yx2nf8OROZ52itjo8CD9sXduErzfOwptoh+kWOZ4hui9JVnswQ488+H0wz2rghTgDwCc23Q0R18qCaXG82uQp4tKsjKicqtyslbVwoa4c4FjCTITJGM0SuXyYua2xW7RAAfHqzGSLochh7nOawwtxtVuv12LiI9lmg201/jr7fbtZhGsjU0eGr+c6VIENkRzlsu3aNoEWi+Wc2CEyNmDiWst9tsk8DlyEA+PTmMkScHoKKNazRk+qyPX3Pnv0fx0o0ZbZ9GJtdN94xrn3bt/vEke0o2G3Xq3UfQsJoMPhXmEWiCaN+h7kBHfGG5LZThgDg05vJEEn1ut2ErQJ9CoiryygmjHcSJNVuW0zUJxEMJphqh9htNrtMW8JYhilrh8iP3AiTxoLJBQoAPp+y+0Pk2yGyGSKuuQcpItNF0E6wb1oT4um7wvfbdb4toltUM+F8Rb4sQ+QbI9KNym2k0ADAZ1ecIVar1WqzmWuH2G1WgxCQ1KfjFzoMZj5W792ojEFdHWeIeMb1erVebwYjNTa7w24TDu94ZYZIfo26UEQJAD6t4ms7C9oh9tm7LySjC/a7XdhcMLzkIyog6uEozhDHRom0k6NbcnQjiVdliGSy4XCOuYEVAPAxLe3LyI5O6MYhjtWX6V0ej80axx6GdoJk0v123YyZbCv9mb6MQxhk+go8aAsJ88xJxkNMt6okEwPAJ7I8QzSjEppLMrurJTfDXohMEe3NHjO9Hbn+j+4eU5ttcH3nTDtE1OQRVe9Rn8r0dZtBq8psO0Ry96pcuhm9JBYAPjTP3AIAasgQAEANGQIAqCFDAAA1ZAgAoIYMAQDUkCEAgBoyBABQQ4YAAGrIEABADRkCAKghQwAANWQIAKCGDAEA1JAhAIAaMgQAUEOGAABqyBAAQA0ZAgCoIUMAADVkCACghgwBANSQIQCAGjIEAFCjIEM8X99eXtw9/E5e/nlzcXt5cXt5/XNi3pf7u8uL28urHy+vWUkA4N2ZzxB/Hq5uLy8en+NX23BwkXkrM5kMAQCfzUyG6Bobup/V/Z/D4XB4emySwXMTEYKmiOfrYLJhhvj9YzUXOwCAj2C2HeLpMcoEv/90OaDp3WhaKY4xQoYAgH9DYYa4uru8uL15+vlwdXcZt0wcf65+vMgQAPCvmMsQL/d3lxd3N9dNhji83N/lB1E+PTYTyBAA8G+YyxDP17eXF48P922GaEdCdD839z9WF3cPTz9WXXdGkyHmfmQIAPjoSsZUdmMn+wxx/McgQyRclwEAn9Sy6zLuHu5lCADgUHqfypfCvoz23WNXxTBDtJ0dk3emAgDevaoMMdoOIUMAwL9ChgAAalSNh9CXAQD/vFe2QzwdDofurg8yBAD8Q86SIQp+ZAgA+NjqMsT1Y9u18bt7Xkbm4eB52iEA4FMoyxAAADEZAgCoIUMAADVkCACghgwBANSQIQCAGjIEAFBDhgAAasgQAEANGQIAqCFDAAA1ZAgAoMZMhthv16vQeruP3t9tupfSKYc2u6DUtKDDbhNNMliLwQzx+83bu01TRPr//KRZx+Xst+tk7uPW5nbTyMpX6paeXc9+UUv35HGS7IaM7ZTxQxms7ewO6Je62+SLKD2I3RJnjk4448iWBTMMZh/91GVWP7tDZ/4kpj7RAB/CknaIzBflaK068s1/OBxyX//NK8PXo+Im66hmcbvNarM7Lnm/XafzDGqq/LvZtRzbpPn4tLi6mNvcYMllezI+UPFvI/s92NxcVEkWul5Pp4i4Rs5vX+lBzK5z7uiMfzyHE6aHbD04qMkHZ+Kw9xPEe3n0N4CPaS5DJOdyTfVUUkmOVLjJl/VmN6i4x75axxNGdpU2u8m6fbOZaodI52xXM7fN++36xKeUhY0ay/bkGTNEnwfGg89uM9hH6X4rPYjr7X7B0Smqq/u1C3JOv/HxqocRdHz3Tm3SYA0BPq75dojw2zTXbr64HSJ6Z3ACuN5sRr7159rom6KioruCjjVJWTtEVPP00Smcvp2irTYnaoulNUV4mjs374I9WZoh5ttU4i0aVLG5pqqpaJG8V3IQi4/O6K7JbM30hh/zRP64jmUI7RDAp1bQl9F+QY/Vr0szRNBUPTZNttTdZrVej42L2G1Wq9V6u9303+/77Wbdr2jUMj7MEIMT8cE2DhYc1wHxsJDpgR9lmnAyXrG1AaZ4T86NdAgzxLGpftgOkfb2DEY4xK0oBX0y7aHblx/EsqPT9UWkYWJ8zM3YoUp27nHHjO3U42dtapfLEMCHVzQeouvvbr8bgyq+/WfpWLz1dh/XecGMk+MEuzPcbLP7sWZoim2/uze73WbQ8Ny+19dU+ZUcnukekqokijlh+fv9cPccZuuTuGYZG80XV2aVe3Kw9oN2iGFNPcxgx5o/OQTdb1MtJPHWLj6IC47OSNTLRK6Sdoh0Z83QDgF8doVjKuNaIToTW9YOEX1Vr7fbTfil3tceuT6TuSVmvtyPHQ5h0Clrh8hVIcP+8gXhaXznDjd1ZI5ony7ak8nRSHZisP39P5vig0aMIFlsB6fzwxP8YQ7KdDgMtnL2IA62fOrojI8QyQ5GLWiH2G1W6+2uy6H7/OEfHbUjNQCfzJIMEZ9GdWd/i8dDhO/GZ89jGSL+xh8sM/NNHpz9xy3dUY9Mri2iq0CHZ7rR/OGL4QoNxh0UnrPGc4zUN7niyvbk4gzRTLHfrpsqc7NrBz6Mr9nslqbHLc4QCw7igqMTTDraI3H8fdyxBW6VNJ4ME09+jGeeVAF8aEUZoqkhcnnhFRlitVqtNpuCdohdOqh/5hQ37WZIq8tjLZNLIzMZIrN50fntfh+u3fIMMSwyv9DwtYI9uTBDxN0xYT/GyIjXsnEP8+0SRQdxwdEJh7+UVOHpjp9pPBjPEMMXt21qrfpAALxLBRmirx8y34+LM8Txu7ysHSIeojdcp2ai3S684G/YEz84U23Wuz5DhLuioD9jab1RkiEW7clFGSJY4VzFX5UhMhMkL5UfxAVHp1v/tB2tm/f4ZoF0aEt4F4vhooN1P7Z89Uub+owCfBRzGWLQ4DzoBy8enZDM19Z82dEJx5pv8t6VSbfBatXd96Ef/tB9e8f3C9hN3AMyGAwwkQHGs1N2M5eq6suY3ZOT0vEQi9dsfLb0UB1nSV8sO4iFR6f59GyX3EJ0sBmDgZCr3Icusyu7LdmNFNXN2Q1VLvxAAbwrMxlitjUhd3I59tWeKXe36UYlrLf78AwvX8fkVqPpqh/2dmReaQvfjtwoaK4dIqq75jtqVulalcvXN9mlFuzJksXNZYiZ4zqaIdJjE9a6gx6rkoOYjskYPTrBR3cyQfUNFrnDdZq+jMmitEMAH1fhmEoAgIgMAQDUkCEAgBoyBABQQ4YAAGrIEABADRkCAKghQwAANWQIAKDGbIbI3Kly7n7I7WwTN2nMPz1hOP3M0w9HFzCxhvkHds3dTzJ/u+aZ5eZulDyjuQvj/ETD5Y3ci3Hp3Q+HD9aYL6/8Ps3NthWu0/Q+Hx7i0U9Q2eGeupnlK29D3a9Z9naec/chf9UNLKcXfTgcZj6YdQvP7ePM4Zlccu6eoePPcTkuJPNQ38y9ROd1xSxYyaKlD3dIdqLwaXHdA3Gi/8P7MPu8jP0u81We/2aeE3wBZG5PnJt2UAuP/pYa+eMdLLF5nsLE90I3U/65pZniBw+UDp56OT37/BSH5NszyhDBI6GOuWLh1016uKMSRpJZYYQYPdjZmXO3tU7fH0SI7MO3Sg/31KNfXpMhho84X5KhXhVfyhZ9fD3Zha/b8KhCzS97fAGZd6Ii4oMVVK/Jod0NDne6FrO31B8/H0k+MYuWXnJodsdH8B6PzH67FiF4T4r6MvoHQo+Jn0KYe8ZB+Hv2YRWvbIcoePZi8zyJzS78hurXbrS6HX8i9dzEyTztQie+mIO3xr/Zjqtw3OTmGVWzx6bU8LGXyetlJ3JRaMxtzugj1Wb2ee6ZW4NVah+6VX64z9IOkTmOZU1aU4+bO+2i05098nzU8oXO6gtdkCGSr5HgQ9Hk9O2+fwpvVN+uNrvxxYQRf3R1Ctshliy94NBkl9qUdppPJpzITIYY+fNL68qir45VUtkNWv2yGaKwHaLgZDiqN5rT9v7k/ZAN+Lkm2WxTw8QWL2m5jifex4/hTjd0v123T33cb9fH54gFm7n8WZDDZ33lH1yWeeTVmGMh4aQjqeIwus+zMbRfgcxB6R6I2U01e7hP3g4xEQN2m8yRLZnxDItOtjvY2te0Q+SOyLJThGjy9EQ9qLFXQRN/d1C7w93Pk/njHutByNXus+0Q5Utf9qlIX4qzkwDBOzCXIXabXA929u9qYhDC8HsqelziaG26qB0iv4TD4Ishv55LY1F2SwfjIarGkgxmyJa526zWm03328ieWpoh9tvuK262jXd8oaO757hTZ96eLjTNEOt1pmctPNktONynVtBnMd4687oVK1/0tjT6L1+f0gxR1A4xrFy7D3+2b2I9Pqgoahmb2+LS5rZBa8To0jdLPhXxQWraMDfrdRRbJouCt1DQl5H5uh3NECV/Zwu+vhe2Q+yOYSFYSBwhcue56VqVdFqPnsZMt40ubxsYWcJ+u25690/+RbJofEN26cOvt+6z0fXqrAa153B/Zoc8DFqHs0PNjptQcLiLq4rFu3qiphr0R01b/JmZX/RxRwRntulJcPWH64QZYrdpat9hwh92d0yt7/Q5ztiWh38NU38Z5UsvOjTpIJW+UbJrS3vtFwmcSNF4iMbod+2w2k7FrX79YKO2z3podGjC6J9N+1cfjxYYduq32X442Cm/ObN/7GV1QJxgJkx8Ce37QYa5VonRcl+RMEa27ZhgSkbI7I5nUeNljvdWj7b2ZJYVxIVdOMiu7HBPLfCVct1f49//Jz2/nF90+NeRTL14TZaeuBdliEHPQD6DTv4xBJ/Z7IpPbGnyiW1bP7LbsmzpJZ+K/Olbuz9ECN6Ft26HSE8g8qesm13xF9Kw1ji+0jUJhqlgvc5/b83+jR+N//3m5in9Js6X2n+FZYNa+MUVhbTXNHcOd2G4Mm1SG577xyXkep/779Pk5dnTs+T7ONsO0e2P7pg3gyTKD/cZO5jT3fiGGWJ20cl+iH59ZTtEupzXjIfo16XdgNwfS9xEN4xC1RkiaYfYZ0eMLF769KHJ/DWELWuD3jv4W+YzRE2vftKJP2E8Qwxf3G7X6+02++d+/GPu/zSbv8mge6NvFMzWkOfKEO1L8w0Q6Qlhts6dzxBJK/DySiDauvjcPtf/MFHXh9syXLuRvpDjBoZhcrw+ym7jbtO1fhcf7ukQ85ov7MHHZfqv55QZYn7Rg7r9uPjXNMvML2f0xYnVivoD0nR7HBw03xIwf34St1wmr7dLjzZyaTvE7KFJ41ycLyQI3ovZDDFepQ86r+M2tv1wvMKgRT+88Hmk7KDhIjjLTGqfcJ7BkgYrmm27PVeGKBlb0U14bH8fnWOkJuy2qt+zx9PxkVLG+4sy322rdIfHq1z6elRcZpKm5SB3dKKdMpsh4tqi7HCPe10XR2ZXT38kTpchShZd0Poz0jo2tZLDv5CTZIjRBXSnGG/SDtEtMP4IL2uHmD80+90uHJsZz5r/84G/YS5D5P/wxivc4bdH/8pu093iJ84WGW2D+fDPNDNncgo/t/Zj31vZTVryvZruhvg0ZFZZ1ki/aNIzoWTgwYIul+M74Uzx4UmLG/nqHSu+26P5tRrsgMyZ2yoOSmM7OPg8FB/ucWkoLT8FjDPRYDtG5xk9Nudd9JI1mQ5B2Y6GM2aIXTfIaklLwHjp4XZmv53SHsaw9Nmllx+a7itw012rsesv2sgXAm9vJkNM/GUM/7IOh0M2FMycsZT0ZXTv5P5qwjbv+TVMCwnWd9iycoJ2iCnxvhqZMd6sbPtn1F2QLiBT7Hz7RLfQ4S5JjnXaGjTYlmAbS7/yjrMUfA76dYj2Uxisyg53djOG652/b+vYRoyE5dzc8yt2tkWPrMb4xNOn7WPVcdpwUCTIxJMJv/0ryIaFpOmrdNnDre96TNJOx+7bZ37pxYcmnTCXGoZthvD25sdD8NmcdNTeP2k8RX7mRQer4PMDHA4HGQIAqCNDAAA1ZAgAoIYMAQDUkCEAgBoyBABQQ4YAAGrIEABADRkCAKghQwAANWQIAKCGDAEA1JAhAIAaMgQAUEOGAABqyBAAQA0ZAgCoIUMAADVkCACghgwBANSQIQCAGjIEAFBDhgAAapRkiN8/Vhe3l1c/XroXXu7vLq9/dr/9ebi6TX+9eHwuK+35+vby4u7hdzLRz5uL28uLsNhhIcO5AIA3U5Ehml8vbm+eDofD4fD0eHkR5IB24sebq9vLi+CnTwNRafnA8XJ/182YyyLdCkwlFQDgvKraIdrccPXjpQ0BXZ7o3lrd/+naEvpq/s/D1e3l1Y+XY2ldY0P3s7r/Exb+3CSJbFNEFyPaWQCAtzaTIdqI0P/c3PdtAIOfqx8vbd/E7c3TMHkMM0QYOA6Hw+Hl958uHDStGt3SczGia6vQowEAf0VBO0RbW4ftEIfDYdgCcTh0bQ93D7/Dtopg+myGuLq7vLi9efr5cHWXTyeZpR+mEwYAcGYFGaJpWijKEMHYiGBMQ9Pp8HOYIV7u7y4v7m6umwyRDNVMi43DSrBiRkUAwF8wmyH6AYzzGaLv+Lh7+N1U8I/PXTNGNkM00zzctxmiiyBhv8ndw9OPVb6x4TicwqgIAHhzcxkibk54fB6MkAhaGn50lfrdw++fN1Fjw+3N08iYym7sZJ8hjv+YzhBR4NAUAQBvbCZDBJdONJV9Mr4hbYe4W13dXl7cPdx3Ffz1z26U5ex1Ge1cZRmiX3p2WAYAcG4lGeLqLr2283DIjod4fmoSw93N9V2fHqIGjGRM5eFwODZULOnLaKd8fD4MB28CAG9g/trOrhYvui4jue9k19LQ30miIEMUtEO0xfaLbsKKUREA8IbmxkM8P/3M3GPqcCjLEGHtfrIMkblOJLqrBADwBpbdp3J0QGV/fUSUIdqqvRnwWDoeYqYvI+zFCIzcxAIAOJO6e10fDgXtEO0EaRdDeTvEUzB9kyG6ARO5EZRuOQUAb+lsGaLtcRjW6L/TvonSDDEVIBpzT/sEAE7mTBmi6ZWI6/LgMo1o4EKaIa77m12GN61Kx1FOrapLPQHg7EoyBABASoYAAGrIEABADRkCAKghQwAANWQIAKCGDAEA1JAhAIAaMxniv//++x8A8M/777//ZAgAYDEZAgCoIUMAADVkCACghgwBANSQIQCAGjIEAFBDhgAAasgQAEANGQIAqPF3MsT3r6sv3369vpy3KRYAGDpfhvj17ctqtfr6Pf9O//r3r6veTACYmTQqdlnJAMBS58kQ37+uVl++ffuazRC/vn3pqvRf374cq/fol4IFJEUHxb6mZACgyDkyxK9vX75+/1+2ov9f3OEQT5E2JEz1TQzeSl6YKRkAeKVzjofIZYikNv/17UvX0dC0XfxKCshniEEmGIaE6ZIBgFd64wyRaxDoxi1MN1nE0yavj7QzjJcMALzS22aIXA9EN036z0SSA6Kyc+0V+ZIBgBN50wyR1vXJWMfB0MepazWD9zKTzZUMALzSG2aITIdDPFJhNnMc/fr2pZs2348xUzIA8EpnyRCDvoiv38fq+uYuEiN3cYgzRH7S0UsuJksGAF7pze5T6daUAPCpeF4GAFBDhgAAasgQAEANGQIAqCFDAAA1ZAgAoIYMAQDUkCEAgBoyBABQQ4YAAGr8nQzhxtcA8NGdL0M0z7zKPQ5r+JisZtqi+r+82OOTvwQLADi582SI5snb3/JP3P717Utcqf/69mX19WtBG8KSYr9/7Sb69e2LFAEAp3aODPHr25ev3//XVPnDyj7tcGir+Pl+iGXFxjMKEQBwYuccD5Gr7NMOh75+Lx/LUFLs7AwAwOu8cYbIjFlok8OrMsRUhGg6QLRCAMBpvW2GSIJC+GvyVjN0sjUoZLrYwK9vXyQIADiHN80QwwgxNN/pMFdsT4AAgPN5wwwxOWahvi9jrFh9GABwTmfJEIMGhq/f5yJESYZYUuywjcOoSgA4pTe7T6VbUwLAp+J5GQBADRkCAKghQwAANWQIAKCGDAEA1JAhAIAaMgQAUEOGAABqyBAAQA0ZAgCo8XcyhBtfA8BHd74M8evbl5EnXQWPyQofjVVW/RcVW1UyALDAeTJE89ztb1+zlf2vb19ylfr3/NSvLbasZABgoXNkiF/fvnz9/r+xunu0w2GuJ6Ky2IKSAYDFzjkeIlfZxx0OJW+8rthFJQMAxd44Q2Tq837gQmlTQVmxNSUDAMXeNkNMdipEkzdDJ1uDQpYUm50DAHilN80QM3V94bCFpcWWlwwAFHvDDDEzLuHXty9lrQXLil1SMgBQ7CwZIrw3Q98Zkavrox6L2ZaC4mIXlwwALPVm96l0a0oA+FQ8LwMAqCFDAAA1ZAgAoIYMAQDUkCEAgBoyBABQQ4YAAGrIEABADRkCAKhRkyEAAP5bmiEAALJkCACghgwBANSQIQCAGjIEAFBDhgAAasgQAEANGQIAqCFDAAA1ZAgAoIYMAQDUkCEAgBoyBABQQ4YAAGrIEABADRkCAKghQwAANWQIAKCGDAEA1JAhAIAaJRni94/Vxe3l1Y+X7oWX+7vL65/db38erm7TXy8en8tKe76+vby4e/idTPTz5uL28iIsNuPl/u4yXjEA4K1UZIjm14vbm6fD4XA4PD1eXgQ5oJ348ebq9vIi+OnTQFRaPnC04eBiMovIEADwN1W1Q7S54erHSxsCujzRvbW6/9O1JfQh4M/D1e3l1Y+XY2ldY0P3s7r/Exb+3ESEoCni+TqYbJgh2nAzFTsAgBOZyRBtROh/bu7bRojMz9WPl66av3kaJo9hhggDx+FwOLz8/tPlgKZVo1t6FyNkCAB4NwraIUa6DAYtEIdD1/Zw9/A7bKsIps9miKu7y4vbm6efD1d3+XQSBxQZAgDegYIM0dTcRRkiGBsRjGloKv6fwwzxcn93eXF3c91kiGSoZlrszZMMAQDvx2yG6EZQFmSIvuPj7uF3U98/Pnc1fTZDNNM83LcZoosgYb/J3cPTj1XXndGmmZkfGQIA3sBchoibEx6fByMkgpaGH90YybuH3z9vosaG25unkTGV3djJPkMc/zHIEPl1c10GAPwFMxkiuHSiqeyT8Q1pO8Td6ur28uLu4b5rUbj+2Y2ynL0uo51LhgCAj6AkQ1zdpdd2Hg7Z8RDPT01iuLu5vuvTQ9SAkYypPBwOx4aKub6M9t1jV8UwQ7RLnLwzFQBwCvPXdna1eNF1Gcl9J7uWhv5OEgUZYrQdQoYAgHdkbjzE89PPzD2mDoeyDBFeSSFDAMBnsuw+laMDKrthlX+iDBFdbFk6HkJfBgB8BHX3uj4cCtoh2gn62zmMlTbaDvEUTC9DAMD7crYMMVqd/06vs1iYIQp+ZAgAOLszZYimVyKuy4PLNKKHfacZ4rq/2WV006oS2iEA4K2UZAgAgJQMAQDUkCEAgBoyBABQQ4YAAGrIEABADRkCAKghQwAANWYyxH8AAP/9999//y3OEP8DAP55MgQAUEOGAABqyBAAQA0ZAgCoIUMAADVkCACghgwBANSQIQCAGjIEAFDj72SI719XX779en05AMDfcr4M8evbIzkW0wAAAqtJREFUl9Vq9fV7/p3+9e9fVy2pAgA+kPNkiO9fV6sv3759zWaIX9++9HHh+9duil/fvkgRAPBxnCND/Pr25ev3/zVJYpghxvoxhAgA+EjOOR4ilyGifozZqQGA9+qNM8RohGh6P7RCAMBH8bYZYqQf49e3LxIEAHwsb5ohshFCgACAj+gNM0S2H0MfBgB8TGfJEMd7PrS+fs9HiMGERlUCwAfxZvepdGtKAPhUPC8DAKghQwAANWQIAKCGDAEA1JAhAIAaMgQAUEOGAABqyBAAQA0ZAgCoIUMAADXeUYZwN2wA+EDeOEP8+vZl5MFa2ad6NpNLFgDw/rxhhmge8/3tazZD/Pr2ZRAVfn37svr6VesEALxHb5Yhfn378vX7/5okMcwQmX6MX9++rL58+6WHAwDepTcfD5HLEJl+jDZBGCUBAO/Ue8gQmQhxTA4yBAC8S+fJEM1YyFYcD4YZYpgSwldkCAB4l/5+O0Q2QgzlruUAAP6av50hspd0JtNrhwCA9+ftMsSgdeHr94IIIUMAwPv0d+9TKSAAwEf1ju51DQB8IDIEAFBDhgAAasgQAEANGQIAqCFDAAA1ZAgAoIYMAQDUkCEAgBoyBABQQ4YAAGqcK0Mcn7DlgRgA8BmdJUN8/9pHh1/fvqxmnswJAHxA58gQ8dM4f337oi0CAD6dM2SI71+PLQ+/vn1ZrVZaIgDg0zlPhvjy7VebHtp/yRAA8MmcqR0iHEspQwDAJ3SGDJEMozQeAgA+o3NflxGNjgAAPo0z3R+iG0tpOCUAfFLuUwkA1JAhAIAaMgQAUEOGAABqyBAAQA0ZAgCoIUMAADVkCACghgwBANSQIQCAGjIEAFBjcYYAAMiSIQCAGjIEAFBDhgAAasgQAEANGQIAqCFDAAA1ZAgAoMb/D5t0M6Hith9ZAAAAAElFTkSuQmCC" alt="" />
-------------------------------------------
需要注意的就是考虑各种情况,各种!各种!!各种!!!各种情况,真是一个让人崩溃但是炒鸡修身养性的题啊....:)
AC代码:
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader; public class Main { public static void main(String[] args) throws IOException { BufferedReader reader=new BufferedReader(new InputStreamReader(System.in)); boolean first=true;
while(first || reader.ready()){
first=false;
String expression=reader.readLine();
String ans=solve(expression);
System.out.println(ans);
} } public static String solve(String expressions){
int a=expressions.charAt(0)-'0';
int b=expressions.charAt(2)-'0';
int c=expressions.charAt(4)-'0';
int d=expressions.charAt(6)-'0'; char o=expressions.charAt(3); if(b==0 || d==0) return "0"; int e=(o=='-')?(a*d-b*c):(a*d+b*c);
int f=b*d; if(e==0) return "0";
if(e==f) return "1";
if(f==1) return Integer.toString(e); int t=gcd(Math.abs(e),Math.abs(f));
if(t==f) return Integer.toString(e/t);
return String.format("%d/%d",e/t,f/t);
} public static int gcd(int a,int b){
return b==0?a:gcd(b,a%b);
} }
题目来源: http://acm.nyist.net/JudgeOnline/problem.php?pid=111
NYOJ题目111分数加减法的更多相关文章
- [LeetCode] Fraction Addition and Subtraction 分数加减法
Given a string representing an expression of fraction addition and subtraction, you need to return t ...
- [LeetCode] 592. Fraction Addition and Subtraction 分数加减法
Given a string representing an expression of fraction addition and subtraction, you need to return t ...
- ACM 分数加减法
分数加减法 时间限制:3000 ms | 内存限制:65535 KB 难度:2 描述 编写一个C程序,实现两个分数的加减法 输入 输入包含多行数据 每行数据是一个字符串,格式是" ...
- poj 3979 分数加减法
分数加减法 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13666 Accepted: 4594 Descriptio ...
- nyoj_111_分数加减法_201311281341
分数加减法 时间限制:3000 ms | 内存限制:65535 KB 难度:2 描述 编写一个C程序,实现两个分数的加减法 输入 输入包含多行数据 每行数据是一个字符串, ...
- Java练习 SDUT-2253_分数加减法
分数加减法 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 编写一个C程序,实现两个分数的加减法 Input 输入包含多 ...
- nyoj 题目2 括号配对问题
描述 今天发现了nyoj,如获至宝.准备开刷. 括号配对问题 现在,有一行括号序列,请你检查这行括号是否配对. 输入 第一行输入一个数N(0<N<=100),表示有N组测试数据.后面的 ...
- NYOJ题目27水池数目
--------------------------------------------- 这道题有点坑,也怪我总是有点马虎,按照正常人的思维0是表示有水池啊竟然是1表示有水池,最坑的是写反了竟然还能 ...
- NYOJ题目20吝啬的国度
-----------------------------------------n-1条边的无向连通图是一棵树,又因为树上两点之间的路径是唯一的,所以解是唯一的.(注意并不一定是二叉树,所以最好采用 ...
随机推荐
- .net生成二维码
下好QRCode.dll引用到项目中 using System; using System.Collections.Generic; using System.Linq; using System.W ...
- 在linux下安装Python:
# 下载最新版本 cd /usr/local/src/ sudo wget http://www.python.org/ftp/python/3.3.2/Python-3.3.2.tar.bz2 su ...
- 2016移动端web5分钟速成(适合新手)
http://www.w3cfuns.com/notes/20813/fecbb840a2574cf712a8625f88a7ab3a.html
- 安装ssh服务
1.先更新下源 sudo apt-get update 2.安装ssh服务 sudo apt-get openssh-server 3.配置ssh-server,配置文件位于/etc/ssh/sshd ...
- 获取SHA1和MD5
首先:1.我们进入到通过cmd打开控制台,进入cmd定位到.android文件夹下.如下图: 2.输入keytool -list -v -keystore debug.keystore得到三种指纹证书 ...
- windows下vim编辑器,字符编码设置。
在windows下的vim默认字符集修改 之前使用vim编辑器的时候碰到乱码的问题,后来在网上看了记下了:在vim编辑器中按esc进入命令模式 1.修改vim内部编码 set encoding= ...
- 2.AngularJS MVC
AngularJs的MVC全部借助于$scope(作用域)实现 1.ng指令 <!doctype html> <html ng-app> <head> <me ...
- tornado 排程
https://groups.google.com/forum/#!topic/python-tornado/KEmAg97zUg8 鉴于不是所有人都能跨越GFW,摘抄如下: Scheduled jo ...
- 音频DAC剖析---解开HI-FI音质的秘密
选自:http://mp3.zol.com.cn/54/547689.html 无论我们是买MP3.MP4也好,实际上我们的数码播放器最经常使用的就是音乐播放功能,所以数码播放器的音质,一直是消费者的 ...
- 前端开发必须知道的JS(二) 闭包及应用
http://www.cnblogs.com/ljchow/archive/2010/07/06/1768749.html 在前端开发必须知道的JS(一) 原型和继承一文中说过下面写篇闭包,加之最近越 ...