hadoop的核心思想是MapReduce,但shuffle又是MapReduce的核心。shuffle的主要工作是从Map结束到Reduce开始之间的过程。首先看下这张图,就能了解shuffle所处的位置。图中的partitions、copy phase、sort phase所代表的就是shuffle的不同阶段。

  

  shuffle阶段又可以分为Map端的shuffle和Reduce端的shuffle。

  一、Map端的shuffle

  Map端会处理输入数据并产生中间结果,这个中间结果会写到本地磁盘,而不是HDFS。每个Map的输出会先写到内存缓冲区中,当写入的数据达到设定的阈值时,系统将会启动一个线程将缓冲区的数据写到磁盘,这个过程叫做spill。

  在spill写入之前,会先进行二次排序,首先根据数据所属的partition进行排序,然后每个partition中的数据再按key来排序。partition的目是将记录划分到不同的Reducer上去,以期望能够达到负载均衡,以后的Reducer就会根据partition来读取自己对应的数据。接着运行combiner(如果设置了的话),combiner的本质也是一个Reducer,其目的是对将要写入到磁盘上的文件先进行一次处理,这样,写入到磁盘的数据量就会减少。最后将数据写到本地磁盘产生spill文件(spill文件保存在{mapred.local.dir}指定的目录中,Map任务结束后就会被删除)。

  最后,每个Map任务可能产生多个spill文件,在每个Map任务完成前,会通过多路归并算法将这些spill文件归并成一个文件。至此,Map的shuffle过程就结束了。

  二、Reduce端的shuffle

  Reduce端的shuffle主要包括三个阶段,copy、sort(merge)和reduce。

  首先要将Map端产生的输出文件拷贝到Reduce端,但每个Reducer如何知道自己应该处理哪些数据呢?因为Map端进行partition的时候,实际上就相当于指定了每个Reducer要处理的数据(partition就对应了Reducer),所以Reducer在拷贝数据的时候只需拷贝与自己对应的partition中的数据即可。每个Reducer会处理一个或者多个partition,但需要先将自己对应的partition中的数据从每个Map的输出结果中拷贝过来。

  接下来就是sort阶段,也成为merge阶段,因为这个阶段的主要工作是执行了归并排序。从Map端拷贝到Reduce端的数据都是有序的,所以很适合归并排序。最终在Reduce端生成一个较大的文件作为Reduce的输入。

  最后就是Reduce过程了,在这个过程中产生了最终的输出结果,并将其写到HDFS上。

  现在来总结一下shuffle过程,我画了张图,希望能够帮助理解。

  本文基于hadoop1.2.1

  如有错误,还请指正

  参考文章:《Hadoop权威指南》 Tom White

  转载请注明出处:http://www.cnblogs.com/gwgyk/p/3997849.html 

hadoop运行原理之shuffle的更多相关文章

  1. Hadoop运行原理总结(详细)

    本编随笔是小编个人参照个人的笔记.官方文档以及网上的资料等后对HDFS的概念以及运行原理进行系统性地归纳,说起来真的惭愧呀,自学了很长一段时间也没有对Hadoop知识点进行归纳,有时候在实战中或者与别 ...

  2. hadoop运行原理之Job运行(三) TaskTracker的启动及初始化

    与JobTracker一样,TaskTracker也有main()方法,然后以线程的方式启动(继承了Runnable接口).main()方法中主要包含两步:一是创建一个TaskTracker对象:二是 ...

  3. hadoop运行原理之Job运行(五) 任务调度

    接着上篇来说.hadoop首先调度辅助型task(job-cleanup task.task-cleanup task和job-setup task),这是由JobTracker来完成的:但对于计算型 ...

  4. hadoop运行原理之Job运行(四) JobTracker端心跳机制分析

    接着上篇来说,TaskTracker端的transmitHeartBeat()方法通过RPC调用JobTracker端的heartbeat()方法来接收心跳并返回心跳应答.还是先看看这张图,对它的大概 ...

  5. hadoop运行原理之Job运行(二) Job提交及初始化

    本篇主要介绍Job从客户端提交到JobTracker及其被初始化的过程. 以WordCount为例,以前的程序都是通过JobClient.runJob()方法来提交Job,但是现在大多用Job.wai ...

  6. hadoop运行原理之Job运行(一) JobTracker启动及初始化

    这部分的计划是这样的,首先解释JobTracker的启动过程和作业从JobClient提交到JobTracker上:然后分析TaskTracker和heartbeat:最后将整个流程debug一遍来加 ...

  7. Hadoop(六)之HDFS的存储原理(运行原理)

    前言 其实说到HDFS的存储原理,无非就是读操作和写操作,那接下来我们详细的看一下HDFS是怎么实现读写操作的! 一.HDFS读取过程 1)客户端通过调用FileSystem对象的open()来读取希 ...

  8. Hadoop基础-Hdfs各个组件的运行原理介绍

    Hadoop基础-Hdfs各个组件的运行原理介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.NameNode工作原理(默认端口号:50070) 1>.什么是NameN ...

  9. 【转载】Spark系列之运行原理和架构

    参考 http://www.cnblogs.com/shishanyuan/p/4721326.html 1. Spark运行架构 1.1 术语定义 lApplication:Spark Applic ...

随机推荐

  1. 教你快速高效接入SDK——总体思路和架构

    题记:很多做游戏开发的人,估计都或多或少地接过渠道SDK,什么UC,当乐,91,小米,360......据统计国内市场当前不下于100家渠道,还包括一些没有SDK的小渠道.每个渠道SDK接入的方法呢, ...

  2. 【final】站立会议---11.28

    名称:nice! 组长:李权 成员:韩媛媛 刘芳芳 宫丽君 于淼 项目名称:约跑app 时间:11月28日 12:30 内容: 新任务的分配 1.李权分配任务 2.韩媛媛写站立会议 3.刘芳芳修改BU ...

  3. RobotFrameWork http/https oauth接口测试 (一)

    感觉自己最近销声匿迹快一个月了,应该总结下自己这个月学习的东西了~~~折腾完公司私有协议的接口测试(c++接口),开始折腾公司的http/https接口和webservice接口的测试,想着把所有的这 ...

  4. [3]R语言在数据处理上的禀赋——par参数详解(一)

    本文目录 公共参数列表 par 颜色相关 字体相关 字体大小相关 线条相关 符号相关 线条和符号大小相关 结束 本文首发:program-dog.blogspot.com 注1:本文也曾在csdn发布 ...

  5. DirectUI 收集资料

    1.[ZsUI]一步一步写个DirectUI.[连载贴] (http://tieba.baidu.com/p/1625954225) ps: 虽然是vb写的,也很简陋,不过有代码,并且作者每节都给出了 ...

  6. 阿里云oss上传图片

    1.首先我们要下载阿里云oss的sdk包:(可以下载原版的,改过的通用版在本人的百度云,嘎嘎嘎~) 2.下载好之后放到项目文件目录里面 3.要在需要的控制器引用这个sdk文件例如: include(& ...

  7. windows+caffe(三)——求取图片的均值

    这个要在图片已经转化成lmdb格式下才能求均值... 1.查看caffe根目录下的bin是否存在compute_image_mean.exe(用的happey大神的) 如果没有存在,你需要打开Main ...

  8. jQuery 效果 —— 隐藏和显示

    jQuery 效果 -- 隐藏和显示 1.隐藏和显示 (1)在jQuery中我们可以使用hide()和show()分别隐藏和显示HTML元素: //隐藏元素 $("button") ...

  9. 【leetcode❤python】 160. Intersection of Two Linked Lists

    #-*- coding: UTF-8 -*- #两种方法#方法1:#计算出A和B两个链表的长度分别为m.n;#长度长的链表先走m-n步,之后再一次遍历寻找#方法2:#先走到一个链表的尾部,从尾部开始走 ...

  10. ReactiveCocoa信号使用方法

    最近研究RAC时都是基于UI控件来使用,对单独的signal没有使用过,最近在网上看到一篇文章是关于RAC单独signal的使用.在学习整理后将个人觉得能帮助用于UI控件的一些signal使用方法记录 ...