小明系列问题――小明序列

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

  大家都知道小明最喜欢研究跟序列有关的问题了,可是也就因为这样,小明几乎已经玩遍各种序列问题了。可怜的小明苦苦地在各大网站上寻找着新的序列问题,可是找来找去都是自己早已研究过的序列。小明想既然找不到,那就自己来发明一个新的序列问题吧!小明想啊想,终于想出了一个新的序列问题,他欣喜若狂,因为是自己想出来的,于是将其新序列问题命名为“小明序列”。

  提起小明序列,他给出的定义是这样的: 
  ①首先定义S为一个有序序列,S={ A1 , A2 , A3 , ... , An },n为元素个数 ; 
  ②然后定义Sub为S中取出的一个子序列,Sub={ Ai1 , Ai2 , Ai3 , ... , Aim },m为元素个数 ; 
  ③其中Sub满足 Ai1 < Ai2 < Ai3 < ... < Aij-1 < Aij < Aij+1 < ... < Aim ; 
  ④同时Sub满足对于任意相连的两个Aij-1与Aij都有 ij - ij-1 > d (1 < j <= m, d为给定的整数); 
  ⑤显然满足这样的Sub子序列会有许许多多,而在取出的这些子序列Sub中,元素个数最多的称为“小明序列”(即m最大的一个Sub子序列)。 
  例如:序列S={2,1,3,4} ,其中d=1; 
  可得“小明序列”的m=2。即Sub={2,3}或者{2,4}或者{1,4}都是“小明序列”。

  当小明发明了“小明序列”那一刻,情绪非常激动,以至于头脑凌乱,于是他想请你来帮他算算在给定的S序列以及整数d的情况下,“小明序列”中的元素需要多少个呢?

 

Input

  输入数据多组,处理到文件结束; 
  输入的第一行为两个正整数 n 和 d;(1<=n<=10^5 , 0<=d<=10^5) 
  输入的第二行为n个整数A1 , A2 , A3 , ... , An,表示S序列的n个元素。(0<=Ai<=10^5)
 

Output

  请对每组数据输出“小明序列”中的元素需要多少个,每组测试数据输出一行。
 

Sample Input

2 0
1 2
5 1
3 4 5 1 2
5 2
3 4 5 1 2
 

Sample Output

2
2
1
 
#include<bits/stdc++.h>
using namespace std;
const int M = 1e5 + 10 , inf = 0x3f3f3f3f;
int n , d ;
int a[M] , Top[M] , maxn[M];
int judge (int x) {
int l = 0 , r = n ;
int ret = l ;
while (l <= r) {
int mid = l + r >> 1 ;
if (x > Top[mid]) {
l = mid+1 ;
ret = mid ;
}
else r = mid-1 ;
}
return ret+1 ;
} void solve () {
int ans = 0 ;
for (int i = 1 ; i <= n ; i ++) {
maxn[i] = judge (a[i]) ;
ans = max (maxn[i] , ans) ;
int j = i-d ;
if (j > 0) Top[ maxn[j] ] = min (Top[ maxn[j] ] , a[j] ) ;
}
printf ("%d\n" , ans ) ;
} int main () {
while (~ scanf ("%d%d" , &n , &d)) {
Top[0] = -inf ;
for (int i = 1 ; i <= n ; i ++) {
scanf ("%d" , &a[i]) ;
Top[i] = inf ;
}
solve () ;
}
return 0 ;
}

  我想大多数人写LIS,都不会设置一个数组去记录以每个值结尾的最长子序列的LIS,因为:

1.我们一般只关心整体的LIS。

2.一般求出子序列的LIS就立刻拿去跟新Top[lis]了,哪里需要存在一个数组里。

然后这就导致一个梗了,我完全没有想过局部lis还有什么用。

就这道题目而言,思路其实就四个字:

延迟跟新。

每次跟新都延迟d次。

 

小明系列问题――小明序列(LIS)的更多相关文章

  1. hdu 4521 小明系列问题——小明序列(线段树+DP或扩展成经典的LIS)

    小明系列问题--小明序列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Tot ...

  2. 小明系列问题——小明序列(Lis 相距大于d的单调上升子序列)

    小明系列问题——小明序列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Tot ...

  3. hdu----(4521)小明系列问题——小明序列

    小明系列问题——小明序列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tota ...

  4. hdu 4521 小明系列问题——小明序列 线段树+二分

    小明系列问题——小明序列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Pro ...

  5. 2018.07.08 hdu4521 小明系列问题——小明序列(线段树+简单dp)

    小明系列问题--小明序列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Proble ...

  6. HDU 4521 小明系列问题——小明序列 (线段树 单点更新)

    题目连接 Problem Description 大家都知道小明最喜欢研究跟序列有关的问题了,可是也就因为这样,小明几乎已经玩遍各种序列问题了.可怜的小明苦苦地在各大网站上寻找着新的序列问题,可是找来 ...

  7. hdu4521 小明系列问题——小明序列

    Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Total Submission ...

  8. hdu_4521_小明系列问题——小明序列(LIS)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=4521 题意:中文题,不解释 题解:这题就是LIS的加强版,可以用二分的nlogn来做,也可以用线段树的 ...

  9. HDU-4521 小明系列问题——小明序列 间隔限制最长上升子序列

    题意:给定一个长度为N的序列,现在要求给出一个最长的序列满足序列中的元素严格上升并且相邻两个数字的下标间隔要严格大于d. 分析: 1.线段树 由于给定的元素的取值范围为0-10^5,因此维护一棵线段树 ...

随机推荐

  1. 网络IO模型:同步IO和异步IO,阻塞IO和非阻塞IO

    同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?这个问题其实不同的人给出 ...

  2. 爬虫例子及知识点(scrapy知识点)

    新知识: 新建一个scrapy项目:scrapy startproject xxx(项目名称) 运行一个scrapy项目:scrapy crawl xxx(项目名称) 项目文件说明: 文件说明: • ...

  3. VRRP协议详解

    今天做了lvs的负载均衡的实验,竟然成功了,出乎我意料......哈哈哈哈 http://blog.csdn.net/fanlu319/article/details/7013258

  4. 日期String相互转换

    SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");Date endate = sdf.parse(endDate) ...

  5. hibernate......1、2级缓存

    1.什么是缓存? 缓存是介于物理数据源与应用程序之间,是对数据库中的数据复制一份临时放在内存中的容器,其作用是为了减少应用程序对物理数据源访问的次数,从而提高了应用程序的运行性能.Hibernate在 ...

  6. springMVC的注解详解

    springmvc常用注解标签详解 1.@Controller 在SpringMVC 中,控制器Controller 负责处理由DispatcherServlet 分发的请求,它把用户请求的数据经过业 ...

  7. JS获取select选中的值,所有option值

    <select name="myselect" id="myselect"> <option value="2042"&g ...

  8. 安装vim的ycm

    环境centos 6.7 vim 7.3 安装vundle Vundle(Vim bundle)是一个Vim的插件管理器.它是把git操作整合进去,用户需要做的只是去GitHub上找到自己想要的插件的 ...

  9. JSP简单标签带属性开发

    1.开发带属性的标签,标签处理器类中属性要有相应setter方法,符合javaBean规范 2.tld文件中进行相应属性标签配置 属性配置相关说明如下图 3.简单标签带属性的例子 1).通过设置标签属 ...

  10. ecshop去头部和掉底部版权

    1.去掉头部版权 打开includes/lib_main.php $page_title = $GLOBALS['_CFG']['shop_title'] . ' - ' . 'Powered by ...