POJ2699 The Maximum Number of Strong Kings
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 2102 | Accepted: 975 |
Description
for k = 1, 2, . . . , n and equality holds when k = n. A player x in a tournament is a strong king if and only if x beats all of the players whose scores are greater than the score of x. For a score sequence S, we say that a tournament T realizes S if S(T) = S. In particular, T is a heavy tournament realizing S if T has the maximum number of strong kings among all tournaments realizing S. For example, see T2 in Figure 1. Player a is a strong king since the score of player a is the largest score in the tournament. Player b is also a strong king since player b beats player a who is the only player having a score larger than player b. However, players c, d and e are not strong kings since they do not beat all of the players having larger scores.
The purpose of this problem is to find the maximum number of strong kings in a heavy tournament after a score sequence is given. For example,Figure 1 depicts two possible tournaments on five players with the same score sequence (1, 2, 2, 2, 3). We can see that there are at most two strong kings in any tournament with the score sequence (1, 2, 2, 2, 3) since the player with score 3 can be beaten by only one other player. We can also see that T2 contains two strong kings a and b. Thus, T2 is one of heavy tournaments. However, T1 is not a heavy tournament since there is only one strong king in T1. Therefore, the answer of this example is 2.
Input
Output
Sample Input
5
1 2 2 2 3
1 1 3 4 4 4 4
3 3 4 4 4 4 5 6 6 6
0 3 4 4 4 5 5 5 6
0 3 3 3 3 3
Sample Output
2
4
5
3
5
Source
网络流 最大流
将代表每场比赛的边记为流量图中的点,从S到每场比赛连边,容量为1;
从每个参赛者到T连边,容量为胜利场数。
假设king是胜场最多的前king个人,将参赛者a[]按胜利次数从大到小排序,方便连边。枚举或者二分king数量(n<=10,复杂度没啥差别),对于每场比赛,如果其中一方a是king,且另一方b胜场更多,那么将边强行定向,从比赛到a连边,容量为1(表示胜利);否则a和b都可以胜利,就将边看作双向边,比赛到a、b各连一条边,容量为1。
↑如果能跑满流,那么当前选取的king个数可行。
(测试数据格式似乎很诡异,以下代码中,如果读入方式换成注释掉的部分,本地手测都能过,交上去就WA)
刚开始有另一种设想:
将参赛者拆点,S到每个入点连边,容量为此人胜场a[i],每个出点到T连边,容量为此人负场n-1-a[i]。
枚举king的个数,每多加一个人,就在前一步的参量网络上添边,看网络流能否增广,能就继续加king人数。
但是这种算法在测discuss里的大数据时就挂掉了。
↑姑且记个思路。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<vector>
#define LL long long
using namespace std;
const int mx[]={,,,-,};
const int my[]={,,,,-};
const int mxn=;
int a[mxn],n=;
int cmp(const int q,const int e){return q>e;}
void read(){
char s[];
/* fgets(s,200,stdin);
int len=strlen(s);
for(int i=0;i<len;i++){
int x=0,f=1;char ch=s[i];
while(ch<'0' || ch>'9'){if(ch=='-')f=-1;ch=s[++i];}
while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=s[++i];}
a[++n]=x;
}*/
gets(s);
int len=strlen(s);
for(int i=;i<len;i++){
if(s[i]>='' && s[i]<='')a[++n]=(s[i]-'');
}
return;
}
struct edge{int v,nxt,f;}e[mxn*mxn*];
int hd[mxn],mct=;
inline void add_edge(int u,int v,int f){
e[++mct].v=v;e[mct].f=f;e[mct].nxt=hd[u];hd[u]=mct;return;
}
inline void ins(int u,int v,int f){add_edge(u,v,f);add_edge(v,u,);return;}
int S,T;
int id[][];
int bct=;
void init(){
memset(hd,,sizeof hd);
n=;mct=;bct=;
return;
}
void init2(){
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
id[i][j]=id[j][i]=++bct;
return;
}
int d[mxn];
bool BFS(){
memset(d,,sizeof d);
queue<int>q;
d[S]=;
q.push(S);
while(!q.empty()){
int u=q.front();q.pop();
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(!d[v] && e[i].f){
d[v]=d[u]+;
q.push(v);
}
}
}
return d[T];
}
int DFS(int u,int lim){
if(u==T)return lim;
int tmp,f=;
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(d[v]==d[u]+ && e[i].f){
tmp=DFS(v,min(lim,e[i].f));
e[i].f-=tmp;
e[i^].f+=tmp;
f+=tmp;
lim-=tmp;
if(!lim)return f;
}
}
d[u]=;
return f;
}
int Dinic(){
int res=;
while(BFS())res+=DFS(S,1e9);
return res;
}
int smm=;
bool solve(int lim){
int i,j;
memset(hd,,sizeof hd);
mct=;
for(i=;i<=smm;i++)ins(S,i,);
for(i=;i<=n;i++)ins(smm+i,T,a[i]);//胜场
int hd=;
for(i=;i<=n;i++)
for(j=;j<=i;j++){
if(i==j)continue;
if(i<=lim && a[i]<a[j])ins(id[i][j],smm+i,);
else{
ins(id[i][j],smm+i,);
ins(id[i][j],smm+j,);
}
}
if(Dinic()==smm)return ;
return ;
}
int m;
int main()
{
scanf("%d\n",&m);
int i,j;
while(m--){
init();//
read();
sort(a+,a+n+,cmp);
init2();
// for(i=1;i<=n;i++)printf("%d ",a[i]);
// printf("\n");
smm=;
for(i=;i<=n;i++)smm+=a[i];
if(smm!=n*(n-)/){printf("0\n");continue;}
smm=n*(n-)/;
S=;T=smm+n+;
int ans=;
for(i=;i<=n;i++){
if(solve(i))ans=i;
else break;
}
printf("%d\n",ans);
}
return ;
}
POJ2699 The Maximum Number of Strong Kings的更多相关文章
- POJ2699:The Maximum Number of Strong Kings(枚举+贪心+最大流)
The Maximum Number of Strong Kings Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2488 ...
- POJ2699 The Maximum Number of Strong Kings(最大流)
枚举所有Strong King的状态(最多1024种左右),然后判断是否合法. 判定合法用网络流,源点-比赛-人-汇点,这样连边. 源点向每场比赛连容量为1的边: 如果一场比赛,A和B,A是Stron ...
- 【POJ2699】The Maximum Number of Strong Kings(网络流)
Description A tournament can be represented by a complete graph in which each vertex denotes a playe ...
- POJ 2699 The Maximum Number of Strong Kings Description
The Maximum Number of Strong Kings Description A tournament can be represented by a complete graph ...
- 【POJ2699】The Maximum Number of Strong Kings(二分,最大流)
题意: 有n个队伍,两两都有比赛 知道最后每支队伍获胜的场数 求最多有多少队伍,他们战胜了所有获胜场数比自己多的队伍,这些队伍被称为SK N<=50 思路:把每个队伍和它们两两之间的比赛都当做点 ...
- 【poj2699】 The Maximum Number of Strong Kings
http://poj.org/problem?id=2699 (题目链接) 题意 给出1张有向完全图.U->V表示U可以打败V并得一分.如果一个人的得分最高,或者他打败所有比自己得分高的人,那么 ...
- The Maximum Number of Strong Kings
poj2699:http://poj.org/problem?id=2699 题意:n个人,进行n*(n-1)/2场比赛,赢一场则得到一分.如果一个人打败了所有比他分数高的对手,或者他就是分数最高的, ...
- 【POJ】【2699】The Maximum Number of Strong Kings
网络流/最大流/二分or贪心 题目大意:有n个队伍,两两之间有一场比赛,胜者得分+1,负者得分+0,问最多有几只队伍打败了所有得分比他高的队伍? 可以想到如果存在这样的“strong king”那么一 ...
- POJ 2699 The Maximum Number of Strong Kings (最大流+枚举)
http://poj.org/problem?id=2699 题意: 一场联赛可以表示成一个完全图,点表示参赛选手,任意两点u, v之间有且仅有一条有向边(u, v)或( v, u),表示u打败v或v ...
随机推荐
- script实现的日期表示
function clockon(bgclock){ var now=new Date(); var year=now.getYear(); var month=now.getMonth(); var ...
- Android -- 自定义权限
在android系统的安全模型中,应用程序在默认的情况下不可以执行任何对其他应用程序,系统或者用户带来负面影响的操作.如果应用需要执行某些操作,就需要声明使用这个操作对应的权限. (在manifest ...
- 分析cocos2d-x中的CrystalCraze示例游戏
cocos2d-x自带了不少示例,以及几个比较简单的游戏,不过这些游戏都是用javascript binding(SpiderMonkey)做的,所以我猜测javascript binding可能是c ...
- C118+Osmocom-bb+Openbts搭建小型基站
演示图片: 演示视频: 交流论坛:GsMsEc 交流Q群:
- es6+移动轮播插件
前言:之前赶项目,都是直接用框架,对于touch事件是模拟两可,趁着有心情,用es6写一个原生移动轮播插件. 用了es6的新特性,确实挺爽的,说到es6,就不得不说到babel,博主已经码好了,直接用 ...
- lecture9-提高模型泛化能力的方法
HInton第9课,这节课没有放论文进去.....如有不对之处还望指正.话说hinton的课果然信息量够大.推荐认真看PRML<Pattern Recognition and Machine L ...
- 熟悉css/css3颜色属性
颜色属性无处不在.字体要用颜色,背景可以有颜色,粒子特效更是离不开颜色.本文参考了一些资料简单总结下以备日后查阅. css中颜色的定义方式: 十六进制色 RGB & RGBA HSL & ...
- 记、基于react-router的单页应用
现在用react写单页应用基本上都是用react-router做前端路由了吧!最近在使用react-router的过程中遇到了不少问题,在这里总结一下. 浏览器url react-router默认提供 ...
- Bootstrap系列 -- 12. 水平表单
Bootstrap框架默认的表单是垂直显示风格,但很多时候我们需要的水平表单风格(标签居左,表单控件居右) 在Bootstrap框架中要实现水平表单效果,必须满足以下两个条件: 1.在<form ...
- operating expense & captial expenditure
营运成本(营业成本, operating expense, OPEX) 指的是运行企业的持续性.消耗性的支出,与之对照的是资本支出(captial expenditure, CAPEX).例如:购买影 ...