[POJ1151]Atlantis

试题描述

There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.

输入

The input consists of several test cases. Each test case starts with a line containing a single integer n (1 <= n <= 100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0 <= x1 < x2 <= 100000;0 <= y1 < y2 <= 100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area. 
The input file is terminated by a line containing a single 0. Don't process it.

输出

For each test case, your program should output one section. The first line of each section must be "Test case #k", where k is the number of the test case (starting with 1). The second one must be "Total explored area: a", where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point. 
Output a blank line after each test case.

输入示例


   25.5

输出示例

Test case #
Total explored area: 180.00

数据规模及约定

见“输入

题解

上一题,比上一题简单。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std; int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 4010
int n, cnt, ca, cd;
struct Rec {
double x1, y1, x2, y2;
Rec() {}
Rec(double _1, double _2, double _3, double _4): x1(_1), y1(_2), x2(_3), y2(_4) {}
} rs[maxn];
struct Rec_int { int x1, y1, x2, y2; } rsi[maxn];
double num[maxn<<1], A[maxn<<1], B[maxn<<1];
struct Line {
int l, r, x;
Line() {}
Line(int _1, int _2, int _3): l(_1), r(_2), x(_3) {}
bool operator < (const Line& t) const { return x < t.x; }
} ad[maxn], de[maxn]; double sumv[maxn<<3];
int addv[maxn<<3];
void build(int L, int R, int o) {
if(L == R) {
sumv[o] = 0.0;
addv[o] = 0;
return ;
}
int M = L + R >> 1, lc = o << 1, rc = lc | 1;
build(L, M, lc); build(M+1, R, rc);
sumv[o] = 0.0; addv[o] = 0;
return ;
}
void update(int L, int R, int o, int ql, int qr, int v) {
int M = L + R >> 1, lc = o << 1, rc = lc | 1;
if(ql <= L && R <= qr) {
addv[o] += v;
if(addv[o]) sumv[o] = A[R] - A[L-1];
else if(L == R) sumv[o] = 0.0;
else sumv[o] = sumv[lc] + sumv[rc];
return ;
}
if(ql <= M) update(L, M, lc, ql, qr, v);
if(qr > M) update(M+1, R, rc, ql, qr, v);
sumv[o] = addv[o] ? A[R] - A[L-1] : sumv[lc] + sumv[rc];
return ;
} int main() {
int kase = 0;
while(1) {
scanf("%d", &n);
if(!n) break;
cnt = 0;
for(int i = 1; i <= n; i++) {
double x1, x2, y1, y2;
scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
rs[i] = Rec(x1, y1, x2, y2);
num[++cnt] = x1; num[++cnt] = x2;
}
sort(num + 1, num + cnt + 1);
cnt = unique(num + 1, num + cnt + 1) - num - 1;
int tcnt = cnt;
for(int i = 1; i < cnt; i++) A[i] = num[i+1] - num[1];
for(int i = 1; i <= n; i++) {
rsi[i].x1 = lower_bound(num + 1, num + cnt + 1, rs[i].x1) - num;
rsi[i].x2 = lower_bound(num + 1, num + cnt + 1, rs[i].x2) - num - 1;
// printf("%d %d\n", rsi[i].x1, rsi[i].x2);
}
cnt = 0;
for(int i = 1; i <= n; i++)
num[++cnt] = rs[i].y1, num[++cnt] = rs[i].y2;
sort(num + 1, num + cnt + 1);
cnt = unique(num + 1, num + cnt + 1) - num - 1;
for(int i = 1; i < cnt; i++) B[i] = num[i+1] - num[i];
ca = cd = 0;
for(int i = 1; i <= n; i++) {
rsi[i].y1 = lower_bound(num + 1, num + cnt + 1, rs[i].y1) - num;
rsi[i].y2 = lower_bound(num + 1, num + cnt + 1, rs[i].y2) - num;
ad[++ca] = Line(rsi[i].x1, rsi[i].x2, rsi[i].y1);
de[++cd] = Line(rsi[i].x1, rsi[i].x2, rsi[i].y2);
} sort(ad + 1, ad + ca + 1);
// for(int i = 1; i <= ca; i++) printf("[%d %d] %d\n", ad[i].l, ad[i].r, ad[i].x);
sort(de + 1, de + cd + 1);
double ans = 0.0;
int ka = 1, kd = 1;
build(1, tcnt, 1);
for(int i = 1; i <= cnt; i++) {
while(ka <= ca && ad[ka].x == i) {
// printf("add: [%d, %d]\n", ad[ka].l, ad[ka].r);
update(1, tcnt, 1, ad[ka].l, ad[ka].r, 1), ka++;
}
while(kd <= cd && de[kd].x == i) {
// printf("del: [%d, %d]\n", de[kd].l, de[kd].r);
update(1, tcnt, 1, de[kd].l, de[kd].r, -1), kd++;
}
if(i < cnt) ans += sumv[1] * B[i];
// printf("sumv[1]: %.2lf\n", sumv[1]);
}
printf("Test case #%d\nTotal explored area: %.2lf\n\n", ++kase, ans);
} return 0;
}

[POJ1151]Atlantis的更多相关文章

  1. poj1151 Atlantis && cdoj 1600艾尔大停电 矩形面积并

    题目: Atlantis Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23758   Accepted: 8834 Des ...

  2. ACM学习历程—POJ1151 Atlantis(扫描线 && 线段树)

    Description There are several ancient Greek texts that contain descriptions of the fabled island Atl ...

  3. POJ1151 Atlantis 【扫描线】

    Atlantis Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16882   Accepted: 6435 Descrip ...

  4. POJ-1151 Atlantis 矩形面积并

    题目链接:http://poj.org/problem?id=1151 扫描线+离散+线段树,线段树每个节点保存的是离散后节点右边的线段. //STATUS:C++_AC_16MS_208KB #in ...

  5. poj1151 Atlantis (线段树+扫描线+离散化)

    有点难,扫描线易懂,离散化然后线段树处理有点不太好理解. 因为这里是一个区间,所有在线段树中更新时,必须是一个长度大于1的区间才是有效的,比如[l,l]这是一根线段,而不是区间了. AC代码 #inc ...

  6. POJ1151 Atlantis 水题 计算几何

    http://poj.org/problem?id=1151 想学一下扫描线线段树,结果写了道水题. #include<iostream> #include<cstdio> # ...

  7. POJ1151 Atlantis 线段树扫描线

    扫描线终于看懂了...咕咕了快三个月$qwq$ 对于所有的横线按纵坐标排序,矩阵靠下的线权值设为$1$,靠上的线权值设为$-1$,然后执行线段树区间加减,每次的贡献就是有效宽度乘上两次计算时的纵坐标之 ...

  8. poj1151 Atlantis——扫描线+线段树

    题目:http://poj.org/problem?id=1151 经典的扫描线问题: 可以用线段树的每个点代表横向被矩形上下边分割开的每一格,这样将一个矩形的出现或消失化为线段树上的单点修改: 每个 ...

  9. POJ1151 Atlantis 扫描线算法

    题目大意 给出几个矩形对角端点坐标,求这些矩形整体覆盖的面积. 扫描线算法 整个平面被每个矩形的水平边所在直线(以后简称“水平线”)分成了几个部分,而整体覆盖面积则为每相邻的两个水平线间夹的长度(以后 ...

随机推荐

  1. arcglobe 图层三大类说明

    若是第一次打开,且在网络连接通畅的情况下,你会发现目录中已有部分数据层,这些数据层是由ArcGIS Online的在线数据:Imagery图层即在线的影像数据.高程数据.地名数据.运输线数据. Arc ...

  2. wpf 窗体内容旋转效果 网摘

    <Window x:Class="simplewpf.chuangtixuanzzhuan"        xmlns="http://schemas.micros ...

  3. 会话控制:session与cookie

    我们在浏览网站时,访问的每一个web页面都需要使用"http协议"实现.而HTTP协议是无状态协议,就是说HTTP协议没有一个内建机制来维护两个事务之间的状态.当一个用户请求一个页 ...

  4. Java线程:Timer和TimerTask

    Timer和TimerTask可以做为实现线程的第三种方式,前两中方式分别是继承自Thread类和实现Runnable接口. Timer是一种线程设施,用于安排以后在后台线程中执行的任务.可安排任务执 ...

  5. jquery 停止animate动画,并且回复最初状态

    // 热门推荐悬浮效果 $("#recom_con li img").mouseenter(function(){ $(this).stop(true, true); $w = p ...

  6. man中文手册配置

    1.ubuntu环境man中文手册配置 1)  终端输入sudo apt-get install manpages-zh 2)  安装后修改配置文件sudo gedit /etc/manpath.co ...

  7. tamper参数

    "tamper/apostrophemask.py","tamper/equaltolike.py","tamper/greatest.py" ...

  8. 记录两张数据库表及Ibatis操作

    建表语句 CREATE TABLE `TS_MopayInvoiceComposition` ( `ID` int(11) NOT NULL AUTO_INCREMENT, `RequestID` i ...

  9. monit 监控并自动重启服务

    原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://coolerfeng.blog.51cto.com/133059/50126 Mo ...

  10. 几种常用的JS类定义方法(转)

    // 方法1 对象直接量 var obj1 = { v1 : "", get_v1 : function() { return this.v1; }, set_v1 : funct ...