归并排序解释

归并排序 Merge Sort 是典型的分治法的应用,其算法步骤完全遵循分治模式。

分治法思想

分治法 思想: 将原问题分解为几个规模较小但又保持原问题性质子问题递归求解这些子问题,然后再合并这些子问题的解,最终得到原问题的解。

分治模式每层递归步骤

1、分解原问题为若干个子问题;

2、解决子问题。递归求解子问题,当子问题规模足够小时,可以直接求解;

3、合并这些子问题的解构成原问题的解。

归并排序的分治模式

1、分解未排序 n 个元素的序列成 各有 n/2 个元素的连续子序列;

2、递归排序两个连续子序列;

3、合并两个已排序的连续子序列构成整个完成排序的序列。


归并排序递归树

我们以序列 [7, 4, 8, 1, 3, 5, 6, 2] 为例构建一个归并排序的递归树

上半部分递归树为将当前长度为 n 的序列拆分成长度为 n/2 的子序列,下半部分递归树为合并已经排序的子序列。


时间复杂度

假设时间复杂度为 T(n),在递归解决当前两个规模为 n/2 的子问题时,我们需要消耗 2T(n/2)* 的时间。

在合并过程中,对于一个具有 n 个元素的序列,我们需要消耗O(n)的时间。

故时间复杂度如下


归并排序核心代码

void Merge(int a[], int left, int mid, int right){
int temp[right - left + 1]; //临时数组用于存储排序时的数
int i = left; //分成两块 i指向左边的数字 j指向右边的数字
int j = mid + 1;
int k = 0; //k用于存储数字到临时数组 while( i <= mid && j <= right ){
if(a[i] < a[j]) //永远都是 i 和 j 指向的数进行比较
temp[k++] = a[i++]; //谁小,谁就先放到临时数组中
else
temp[k++] = a[j++];
} while( i <= mid ) //如果左边还有数没放上去,就依次放上去
temp[k++] = a[i++];
while( j <= right ) //如果是右边还有同上
temp[k++] = a[j++]; for(int m = left, n = 0; m <= right; m++, n++)//读取临时数组中的数
a[m] = temp[n];
} void Merge_Sort(int a[], int left, int right){
if( left == right )
return; int mid = (left + right)/2;
//递归拆分成较小规模子序列排序
Merge_Sort(a, left, mid);
Merge_Sort(a, mid + 1, right);
Merge(a, left, mid, right); //合并较小规模问题解
}

完整程序源代码

#include<iostream>
#include<ctime>
using namespace std; void Merge(int a[], int left, int mid, int right){
int temp[right - left + 1]; //临时数组用于存储排序时的数
int i = left; //分成两块 i指向左边的数字 j指向右边的数字
int j = mid + 1;
int k = 0; //k用于存储数字到临时数组 while( i <= mid && j <= right ){
if(a[i] < a[j]) //永远都是 i 和 j 指向的数进行比较
temp[k++] = a[i++]; //谁小,谁就先放到临时数组中
else
temp[k++] = a[j++];
} while( i <= mid ) //如果左边还有数没放上去,就依次放上去
temp[k++] = a[i++];
while( j <= right ) //如果是右边还有同上
temp[k++] = a[j++]; for(int m = left, n = 0; m <= right; m++, n++)//读取临时数组中的数
a[m] = temp[n];
} void Merge_Sort(int a[], int left, int right){
if( left == right )
return; int mid = (left + right)/2;
//递归拆分成较小规模子序列排序
Merge_Sort(a, left, mid);
Merge_Sort(a, mid + 1, right);
Merge(a, left, mid, right); //合并较小规模问题解
} void Show(int a[], int n){
for(int i = 0; i < n; i++)
cout<<a[i]<<" ";
cout<<endl;
} main(){
int a[50];
srand((int)time(0));
for(int i = 0; i < 50; i++)
a[i] = rand() % 100 + 1;
Show(a, 50); Merge_Sort(a, 0, 50); cout<<endl<<endl;
Show(a, 50);
}

程序运行结果图

[排序算法] 归并排序 (C++)的更多相关文章

  1. 经典排序算法 - 归并排序Merge sort

    经典排序算法 - 归并排序Merge sort 原理,把原始数组分成若干子数组,对每个子数组进行排序, 继续把子数组与子数组合并,合并后仍然有序,直到所有合并完,形成有序的数组 举例 无序数组[6 2 ...

  2. 数据结构和算法(Golang实现)(23)排序算法-归并排序

    归并排序 归并排序是一种分治策略的排序算法.它是一种比较特殊的排序算法,通过递归地先使每个子序列有序,再将两个有序的序列进行合并成一个有序的序列. 归并排序首先由著名的现代计算机之父John_von_ ...

  3. 使用 js 实现十大排序算法: 归并排序

    使用 js 实现十大排序算法: 归并排序 归并排序 refs js 十大排序算法 All In One https://www.cnblogs.com/xgqfrms/p/13947122.html ...

  4. java泛型中使用的排序算法——归并排序及分析

    一.引言 我们知道,java中泛型排序使用归并排序或TimSort.归并排序以O(NlogN)最坏时间运行,下面我们分析归并排序过程及分析证明时间复杂度:也会简述为什么java选择归并排序作为泛型的排 ...

  5. js 实现排序算法 -- 归并排序(Merge Sort)

    原文: 十大经典排序算法(动图演示) 归并排序 归并排序是建立在归并操作上的一种有效的排序算法.该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得 ...

  6. javascript排序算法-归并排序

    归并排序 概念:归并排序是一种分治算法.其思想是将原始数组切分成较小的数组,直到每个小数组只有一个位置,接着将小数组归并成较大的数组,直到最后只有一个排序完毕的大数组. 时间复杂度: O(nlogn) ...

  7. 八大排序算法——归并排序(动图演示 思路分析 实例代码java 复杂度分析)

    一.动图演示 二.思路分析 归并排序就是递归得将原始数组递归对半分隔,直到不能再分(只剩下一个元素)后,开始从最小的数组向上归并排序 1.  向上归并排序的时候,需要一个暂存数组用来排序, 2.  将 ...

  8. 排序算法-归并排序(Java)

    package com.rao.sort; import java.util.Arrays; /** * @author Srao * @className MergeSort * @date 201 ...

  9. 疯子的算法总结(六) 复杂排序算法 ① 归并排序 merge_sort()

    归并排序采取了分治的思想,每次分别排左半边和右半边,不断递归调用自己,直到只有一个元素递归结束,开始回溯,调用merge函数,合并两个有序序列,再合并的时候每次给末尾追上一个最大int这样就不怕最后一 ...

  10. JavaScript排序算法——归并排序

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

随机推荐

  1. 001从零开始入门Entity Framework Core——基础知识

    Entity Framework (EF) Core 是轻量化.可扩展.开源和跨平台版的常用 Entity Framework 数据访问技术. 一.什么是 Entity Framework Core ...

  2. 操作服务器的神奇工具Tmux

    Tmux 是什么? 会话与进程 命令行的典型使用方式是,打开一个终端窗口(terminal window,以下简称"窗口"),在里面输入命令.用户与计算机的这种临时的交互,称为一次 ...

  3. 防止一台logstash机器上接入多个端口的日志会产生混乱

    为了防止一台机器上多个接入会导致日志混乱所以地在各模块上添加type标识并作if判断! 不多比比直接上配置 [root@sf215 conf.d]# cat jddns-servers.conf in ...

  4. python3实现:进程遇Error定时重启

    import os import time # 停止HFish def stopHFish(): # while True: try: # 找到HFish进程号 HFish_id = int(os.p ...

  5. 快速排序C语言版图文详解

    ​ 算法原理:选一个数位基准,将序列分成两个部分,一边全是比它小序列,另一边全是比它大序列.然后再分别对比他小的序列和比再次进行基准分割.依次分割下去,得到一个有序的队列. 原理图示: ​编辑 ​编辑 ...

  6. Base64加密、解密

    #region Base64加密方法 /// <summary> /// Base64加密,采用utf8编码方式加密 /// </summary> /// <param ...

  7. Kafka开启SASL认证 【windowe详细版】

    一.JAAS配置 Zookeeper配置JAAS zookeeper环境下新增一个配置文件,如zk_server_jass.conf,内容如下: Server { org.apache.kafka.c ...

  8. flutter系列之:Material中的3D组件Card

    目录 简介 Card详解 Card的使用 总结 简介 除了通用的组件之外,flutter还提供了两种风格的特殊组件,其中在Material风格中,有一个Card组件,可以很方便的绘制出卡片风格的界面, ...

  9. 5_SpringMVC

    一. 什么是MVC框架 MVC全名是Model View Controller, 是模型(model), 视图(view), 控制器(controller)的缩写, 一种软件设计典范, 用一种业务逻辑 ...

  10. 一文入门Qt Quick

    以下内容为本人的著作,如需要转载,请声明原文链接微信公众号「englyf」https://www.cnblogs.com/englyf/p/16733091.html 初识Qt Quick 很高兴可以 ...