题目链接


题目描述:

给定一个长度为\(~\)n\(~\)的字符序列\(~\)a,初始时序列中全部都是字符\(~\)L。

有\(~\)q\(~\)次修改,每次给定一个\(~\)x,做出如下变化:

\(~~\) 1. a\(_{x}\)\(~\)=\(~\)L \(\rightarrow\)a\(_{x}\)\(~\)=\(~\)R

\(~~\) 2. a\(_{x}\)\(~\)=\(~\)R \(\rightarrow\)a\(_{x}\)\(~\)=\(~\)L

对于一个只含字符 L,R 的字符串 s,若其中不存在连续的 L 和 R,则称 s 满足要求。

每次修改后,请输出当前序列 a 中最长的满足要求的连续子串的长度。


题目思路

\(~~\) 利用线段树来维护左右区间进而维护区间某一属性的最大值

\(~~\)维护区间的lmax,rmax,即以左端点开始的最大值和以右端点开始的最大值

\(~~\)这样一个区间的最大值就可以通过子区间的maxn,lmax,rmax来维护

具体措施如下:

\(~~\) 1. 当两个子区间相接的地方不能连在一起时:

\(~~~~~\) 那父区间的最大值只能由左右区间的最大值转移而来: maxn[u]\(~\)=\(~\) max(maxn[ls],maxn[rs]);

\(~~~~~\) 而父区间的lmax由左区间的lmax转移来,rmax由右区间的rmax转移来: lmax[u]\(~\)=\(~\)lmax[ls],rmax[u]\(~\)=\(~\)rmax[rs];

\(~~\) 2. 当两个子区间相接的地方能连在一起时:

\(~~~~~\) 父区间的最大值就要考虑存不存在左区间的\(~\)“rmax”\(~\)和右区间的\(~\)“lmax”\(~\)连在一起比左右区间的maxn大的情况了:

\(~~~~~~\)maxn[u]\(~\)=\(~\)max(rmax[ls]+lmax[rs],max(maxn[ls],maxn[rs]));

\(~~~~~\) 同时因为左右区间可以连接在一块,所以在转移rmax和lmax也要考虑到是否会存在连接在一起的可能:

\(~~~~~~\) if(rmax[rs]\(~\)=\(~\)整个右区间的长度):

\(~~~~~~~~~~\) rmax[u]\(~\)=\(~\)rmax[ls]\(~\)+\(~\)右区间长度;

\(~~~~~~\) if(lmax[ls]\(~\)=\(~\)整个左区间的长度):

\(~~~~~~~~~~\) lmax[u]\(~\)=\(~\)lmax[rs]\(~\)+\(~\)左区间长度;

综上所述我们就完成了线段树的维护了,根据我们的思路,这道题在维护的时候还需要同时记录每个区间的区间长度,左右边界的元素:

即len[\(~\)],pl[\(~\)],pr[\(~\)]


代码实现

# include<bits/stdc++.h>
using namespace std;
# define int long long
# define ls u<<1
# define rs u<<1|1
const int N = 2e5 + 10;
int a[N], p, n, m;
struct segtree {
int lmax[4 * N], rmax[4 * N], maxn[N << 2];
int pl[N << 2], pr[N << 2], len[N << 2];
void pushup(int u) {
lmax[u] = lmax[ls];
rmax[u] = rmax[rs];
pl[u] = pl[ls];
pr[u] = pr[rs];
maxn[u] = max(maxn[ls], maxn[rs]);
if (pr[ls] != pl[rs]) {
maxn[u] = max(maxn[u], rmax[ls] + lmax[rs]);
if (maxn[ls] == len[ls]) {
lmax[u] = len[ls] + lmax[rs];
}
if (maxn[rs] == len[rs]) {
rmax[u] = rmax[ls] + len[rs];
}
}
} void build(int u, int l, int r) {
len[u] = r - l + 1;
if (l == r) {
lmax[u] = rmax[u] = maxn[u] = 1;
pl[u] = pr[u] = 1;
len[u] = 1;
return;
}
int mid = l + r >> 1;
build(ls, l, mid);
build(rs, mid + 1, r);
pushup(u);
} void modify(int u, int l, int r, int L, int R, int c) {
if (L <= l && r <= R) {
pl[u] ^= 1;
pr[u] ^= 1;
return;
}
int mid = l + r >> 1;
if (L <= mid) modify(ls, l, mid, L, R, c);
if (mid + 1 <= R) modify(rs, mid + 1, r, L, R, c);
pushup(u);
} int query(int u, int l, int r, int L, int R) {
if (l >= L && r <= R) {
}
int mid = l + r >> 1;
if (R <= mid) return query(ls, l, mid, L, R);
else if (L > mid) return query(rs, mid + 1, r, L, R);
else return max(query(ls, l, mid, L, mid), query(rs, mid + 1, r, mid + 1, R)); }
} tr; signed main() {
cin >> n >> m;
tr.build(1, 1, n); while (m--) {
int x;
cin >> x;
tr.modify(1, 1, n, x, x, 1);
cout << max(tr.maxn[1], max(tr.lmax[1], tr.rmax[1])) << endl;
}
return 0;
}

同类题型:

  1. E. Non-Decreasing Dilemma

    \(~~~~\)代码:

P6492 STEP(线段树维护左右区间pushup)的更多相关文章

  1. codeforces Good bye 2016 E 线段树维护dp区间合并

    codeforces Good bye 2016 E 线段树维护dp区间合并 题目大意:给你一个字符串,范围为‘0’~'9',定义一个ugly的串,即串中的子串不能有2016,但是一定要有2017,问 ...

  2. 2016shenyang-1002-HDU5893-List wants to travel-树链剖分+线段树维护不同区间段个数

    肯定先无脑树链剖分,然后线段树维护一段区间不同个数,再维护一个左右端点的费用. 线段树更新,pushDown,pushUp的时候要注意考虑链接位置的费用是否相同 还有就是树链剖分操作的时候,维护上一个 ...

  3. hdu_5726_GCD(线段树维护区间+预处理)

    题目链接:hdu_5726_GCD 题意: 给你n个数(n<=1e5)然后m个询问(m<=1e5),每个询问一个区间,问你这个区间的GCD是多少,并且输出从1到n有多少个区间的GCD和这个 ...

  4. FJUT3568 中二病也要敲代码(线段树维护区间连续最值)题解

    题意:有一个环,有1~N编号,m次操作,将a位置的值改为b,问你这个环当前最小连续和多少(不能全取也不能不取) 思路:用线段树维护一个区间最值连续和.我们设出两个变量Lmin,Rmin,Mmin表示区 ...

  5. [Codeforces]817F. MEX Queries 离散化+线段树维护

    [Codeforces]817F. MEX Queries You are given a set of integer numbers, initially it is empty. You sho ...

  6. hdu2795(线段树单点更新&区间最值)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2795 题意:有一个 h * w 的板子,要在上面贴 n 条 1 * x 的广告,在贴第 i 条广告时要 ...

  7. POJ.2763 Housewife Wind ( 边权树链剖分 线段树维护区间和 )

    POJ.2763 Housewife Wind ( 边权树链剖分 线段树维护区间和 ) 题意分析 给出n个点,m个询问,和当前位置pos. 先给出n-1条边,u->v以及边权w. 然后有m个询问 ...

  8. 滑动窗口(poj,线段树维护区间最值)

    题目描述 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口.现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的最大值和最小值. 例如: The array i ...

  9. Can you answer these queries V SPOJ - GSS5 (分类讨论+线段树维护区间最大子段和)

    recursion有一个整数序列a[n].现在recursion有m次询问,每次她想知道Max { A[i]+A[i+1]+...+A[j] ; x1 <= i <= y1 , x2 &l ...

随机推荐

  1. [CF1525D] Armchairs (DP / 模拟费用流)

    题面简述 一条线上等距地分布着 n n n 老鼠和 m m m 洞( m ≥ n m\geq n m≥n),这连续 n + m n+m n+m 个位置上要么是老鼠要么是洞,一个老鼠进一个洞,代价是所有 ...

  2. 记一次血淋淋的MySQL崩溃修复案例

    摘要:今天给大家带来一篇MySQL数据库崩溃的修复案例 本文分享自华为云社区<记一次MySQL崩溃修复案例,再也不用删库跑路了>,作者: 冰 河. 问题描述 研究MySQL源代码,调试并压 ...

  3. DES|3DES|AES|RSA|DH | CA | SSL(HTTPS)

    1.对称密钥算法: 加解密速度块,算法使安全的,已知算法无法推出密钥.但是密钥的分发困难. DES:对称密钥算法,是一种块加密算法,只有一个密钥.加解密都是用一个密钥. 3DES:与DES一样,可以认 ...

  4. python 二分法查找字典中指定项第一次出现的索引

    import time #引入time库,后续计算时间. inform_m = {} #创建母字典 inform_s = {} #母字典下嵌套的子字典 #给母字典添加键-值 for i in rang ...

  5. JAVA中自定义扩展Swagger的能力,自动生成参数取值含义说明,提升开发效率

    大家好,又见面了. 在JAVA做前后端分离的项目开发的时候,服务端需要提供接口文档供周边人员做接口的对接指导.越来越多的项目都在尝试使用一些基于代码自动生成接口文档的工具来替代由开发人员手动编写接口文 ...

  6. 【python】生成一段连续的日期

    date-gen.py import datetime def date_generate(start_date, end_date): print(f'Hi, {start_date}, {end_ ...

  7. 对表白墙wxss的解释

    一.index.wxss 1 /* 信息 */ 2 .Xinxi{ 3 display: flex; 4 flex-wrap: wrap; 5 margin: 0rpx 1%; 6 } 7 8 9 / ...

  8. flink-cdc同步mysql数据到hbase

    本文首发于我的个人博客网站 等待下一个秋-Flink 什么是CDC? CDC是(Change Data Capture 变更数据获取)的简称.核心思想是,监测并捕获数据库的变动(包括数据 或 数据表的 ...

  9. Keepalived+HAProxy 搭建高可用负载均衡

    转载自:https://mp.weixin.qq.com/s/VebiWftaRa26x1aA21Jqww 1. 概述 软件负载均衡技术是指可以为多个后端服务器节点提供前端IP流量分发调度服务的软件技 ...

  10. 第二章:视图层 - 1:URL路由基础

    路由的编写方式是Django2.0和1.11最大的区别所在.Django官方迫于压力和同行的影响,不得不将原来的正则匹配表达式,改为更加简单的path表达式,但依然通过re_path()方法保持对1. ...