题目链接


题目描述:

给定一个长度为\(~\)n\(~\)的字符序列\(~\)a,初始时序列中全部都是字符\(~\)L。

有\(~\)q\(~\)次修改,每次给定一个\(~\)x,做出如下变化:

\(~~\) 1. a\(_{x}\)\(~\)=\(~\)L \(\rightarrow\)a\(_{x}\)\(~\)=\(~\)R

\(~~\) 2. a\(_{x}\)\(~\)=\(~\)R \(\rightarrow\)a\(_{x}\)\(~\)=\(~\)L

对于一个只含字符 L,R 的字符串 s,若其中不存在连续的 L 和 R,则称 s 满足要求。

每次修改后,请输出当前序列 a 中最长的满足要求的连续子串的长度。


题目思路

\(~~\) 利用线段树来维护左右区间进而维护区间某一属性的最大值

\(~~\)维护区间的lmax,rmax,即以左端点开始的最大值和以右端点开始的最大值

\(~~\)这样一个区间的最大值就可以通过子区间的maxn,lmax,rmax来维护

具体措施如下:

\(~~\) 1. 当两个子区间相接的地方不能连在一起时:

\(~~~~~\) 那父区间的最大值只能由左右区间的最大值转移而来: maxn[u]\(~\)=\(~\) max(maxn[ls],maxn[rs]);

\(~~~~~\) 而父区间的lmax由左区间的lmax转移来,rmax由右区间的rmax转移来: lmax[u]\(~\)=\(~\)lmax[ls],rmax[u]\(~\)=\(~\)rmax[rs];

\(~~\) 2. 当两个子区间相接的地方能连在一起时:

\(~~~~~\) 父区间的最大值就要考虑存不存在左区间的\(~\)“rmax”\(~\)和右区间的\(~\)“lmax”\(~\)连在一起比左右区间的maxn大的情况了:

\(~~~~~~\)maxn[u]\(~\)=\(~\)max(rmax[ls]+lmax[rs],max(maxn[ls],maxn[rs]));

\(~~~~~\) 同时因为左右区间可以连接在一块,所以在转移rmax和lmax也要考虑到是否会存在连接在一起的可能:

\(~~~~~~\) if(rmax[rs]\(~\)=\(~\)整个右区间的长度):

\(~~~~~~~~~~\) rmax[u]\(~\)=\(~\)rmax[ls]\(~\)+\(~\)右区间长度;

\(~~~~~~\) if(lmax[ls]\(~\)=\(~\)整个左区间的长度):

\(~~~~~~~~~~\) lmax[u]\(~\)=\(~\)lmax[rs]\(~\)+\(~\)左区间长度;

综上所述我们就完成了线段树的维护了,根据我们的思路,这道题在维护的时候还需要同时记录每个区间的区间长度,左右边界的元素:

即len[\(~\)],pl[\(~\)],pr[\(~\)]


代码实现

# include<bits/stdc++.h>
using namespace std;
# define int long long
# define ls u<<1
# define rs u<<1|1
const int N = 2e5 + 10;
int a[N], p, n, m;
struct segtree {
int lmax[4 * N], rmax[4 * N], maxn[N << 2];
int pl[N << 2], pr[N << 2], len[N << 2];
void pushup(int u) {
lmax[u] = lmax[ls];
rmax[u] = rmax[rs];
pl[u] = pl[ls];
pr[u] = pr[rs];
maxn[u] = max(maxn[ls], maxn[rs]);
if (pr[ls] != pl[rs]) {
maxn[u] = max(maxn[u], rmax[ls] + lmax[rs]);
if (maxn[ls] == len[ls]) {
lmax[u] = len[ls] + lmax[rs];
}
if (maxn[rs] == len[rs]) {
rmax[u] = rmax[ls] + len[rs];
}
}
} void build(int u, int l, int r) {
len[u] = r - l + 1;
if (l == r) {
lmax[u] = rmax[u] = maxn[u] = 1;
pl[u] = pr[u] = 1;
len[u] = 1;
return;
}
int mid = l + r >> 1;
build(ls, l, mid);
build(rs, mid + 1, r);
pushup(u);
} void modify(int u, int l, int r, int L, int R, int c) {
if (L <= l && r <= R) {
pl[u] ^= 1;
pr[u] ^= 1;
return;
}
int mid = l + r >> 1;
if (L <= mid) modify(ls, l, mid, L, R, c);
if (mid + 1 <= R) modify(rs, mid + 1, r, L, R, c);
pushup(u);
} int query(int u, int l, int r, int L, int R) {
if (l >= L && r <= R) {
}
int mid = l + r >> 1;
if (R <= mid) return query(ls, l, mid, L, R);
else if (L > mid) return query(rs, mid + 1, r, L, R);
else return max(query(ls, l, mid, L, mid), query(rs, mid + 1, r, mid + 1, R)); }
} tr; signed main() {
cin >> n >> m;
tr.build(1, 1, n); while (m--) {
int x;
cin >> x;
tr.modify(1, 1, n, x, x, 1);
cout << max(tr.maxn[1], max(tr.lmax[1], tr.rmax[1])) << endl;
}
return 0;
}

同类题型:

  1. E. Non-Decreasing Dilemma

    \(~~~~\)代码:

P6492 STEP(线段树维护左右区间pushup)的更多相关文章

  1. codeforces Good bye 2016 E 线段树维护dp区间合并

    codeforces Good bye 2016 E 线段树维护dp区间合并 题目大意:给你一个字符串,范围为‘0’~'9',定义一个ugly的串,即串中的子串不能有2016,但是一定要有2017,问 ...

  2. 2016shenyang-1002-HDU5893-List wants to travel-树链剖分+线段树维护不同区间段个数

    肯定先无脑树链剖分,然后线段树维护一段区间不同个数,再维护一个左右端点的费用. 线段树更新,pushDown,pushUp的时候要注意考虑链接位置的费用是否相同 还有就是树链剖分操作的时候,维护上一个 ...

  3. hdu_5726_GCD(线段树维护区间+预处理)

    题目链接:hdu_5726_GCD 题意: 给你n个数(n<=1e5)然后m个询问(m<=1e5),每个询问一个区间,问你这个区间的GCD是多少,并且输出从1到n有多少个区间的GCD和这个 ...

  4. FJUT3568 中二病也要敲代码(线段树维护区间连续最值)题解

    题意:有一个环,有1~N编号,m次操作,将a位置的值改为b,问你这个环当前最小连续和多少(不能全取也不能不取) 思路:用线段树维护一个区间最值连续和.我们设出两个变量Lmin,Rmin,Mmin表示区 ...

  5. [Codeforces]817F. MEX Queries 离散化+线段树维护

    [Codeforces]817F. MEX Queries You are given a set of integer numbers, initially it is empty. You sho ...

  6. hdu2795(线段树单点更新&区间最值)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2795 题意:有一个 h * w 的板子,要在上面贴 n 条 1 * x 的广告,在贴第 i 条广告时要 ...

  7. POJ.2763 Housewife Wind ( 边权树链剖分 线段树维护区间和 )

    POJ.2763 Housewife Wind ( 边权树链剖分 线段树维护区间和 ) 题意分析 给出n个点,m个询问,和当前位置pos. 先给出n-1条边,u->v以及边权w. 然后有m个询问 ...

  8. 滑动窗口(poj,线段树维护区间最值)

    题目描述 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口.现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的最大值和最小值. 例如: The array i ...

  9. Can you answer these queries V SPOJ - GSS5 (分类讨论+线段树维护区间最大子段和)

    recursion有一个整数序列a[n].现在recursion有m次询问,每次她想知道Max { A[i]+A[i+1]+...+A[j] ; x1 <= i <= y1 , x2 &l ...

随机推荐

  1. 多种方法在Markdown加入上划线、中划线、下划线

    上划线和下划线不是Markdown自身语法,因此需要一点摸索,特将结果记录于此 1.中划线 中划线是markdown自身语法,实现起来很简单: ~~中划线~~ 实现的效果如下: 中划线 2.下划线 2 ...

  2. 未完待续【java】JavaEE学习路线总览

    这个博客会详细介绍各种技术的知识点,从零基础到入门,充当引路的作用. 同时也会发布一些Swift语言.c#语言.Xcode开发的学习笔记.一些阅读的笔记(部分读书笔记无法发布). 目前1-43的Jav ...

  3. 第七十六篇:ref引用(在vue中引用Dom的方法)

    好家伙, 引子: jQuery简化了程序员操作DOM的过程 vue 优势:MVVM 在vue中,程序员不需要操作DOM.程序员只需要把数据维护好即可!(数据驱动视图) 那么若要在vue中操作dom,这 ...

  4. 第六十一篇:Vue的绑定事件和修饰符

    好家伙,补基础加实践 1.绑定事件 我们使用v-on(简写为@)来绑定事件 写个例子, 按钮绑定数字加一(太tm经典了) 在<button>元素中使用@点击事件绑定方法"的&qu ...

  5. Linux的OpenLava配置

    OpenLava OpenLava是基于LSF早期的开源版本发展而来,其免费.开源.兼容IBM LSF的工作负载调度器.当你需要执行某项业务时候(比如跑渲染之类的),当有服务器处于空闲状态时候,可以直 ...

  6. 用Python实现广度优先搜索

    图是一种善于处理关系型数据的数据结构,使用它可以很轻松地表示数据之间是如何关联的 图的实现形式有很多,最简单的方法之一就是用散列表 背景 图有两种经典的遍历方式:广度优先搜索和深度优先搜索.两者是相似 ...

  7. Helm安装ingress-nginx-4.2.3

    Application version 1.3.0 Chart version 4.2.3 获取chart包 helm fetch ingress-nginx/ingress-nginx --vers ...

  8. 高清地图转换(xord转apollo的bin文件)

    目标 将carla中的OpenDrive地图(carla\Unreal\CarlaUE4\Content\Carla\Maps\OpenDrive)转换为Apollo中可识别的地图格式(bin与txt ...

  9. PostgreSQL 绑定变量窥探

    今天我们要探讨的是 custom执行计划和通用执行计划.这一技术在 Oracle中被称为绑定变量窥视.但 Kingbase中并没有这样的定义,更严格地说,Kingbase叫做custom执行计划和通用 ...

  10. KingbaseES V8R6集群同步模式synchronous参数配置详解

    如下图所示: 集群数据同步原理说明: synchronous参数配置测试: 集群节点信息: ID | Name | Role | Status | Upstream | repmgrd | PID | ...