2023.1.13

今日完成的[餐巾计划问题],是一道最小费用最大流的模板题,本人太弱在第一次使用dinic + spfa 完成此题时,也出现了许多问题,在此总结和提醒。

大致题意

一个餐厅在相继的 N 天里,每天需用的餐巾数不尽相同。假设第 i 天需要 \(r_i\)块餐巾( i=1,2,...,N)。餐厅可以购买新的餐巾,每块餐巾的费用为 p 分;或者把旧餐巾送到快洗部,洗一块需 m 天,其费用为 f 分;或者送到慢洗部,洗一块需 n 天(n>m),其费用为 s 分(s<f)。

每天结束时,餐厅必须决定将多少块脏的餐巾送到快洗部,多少块餐巾送到慢洗部,以及多少块保存起来延期送洗。但是每天洗好的餐巾和购买的新餐巾数之和,要满足当天的需求量。

试设计一个算法为餐厅合理地安排好 N 天中餐巾使用计划,使总的花费最小。编程找出一个最佳餐巾使用计划。

思路整理

需要餐巾尽量多的情况下费用尽量少,考虑向网络流转化。考虑把每一天视为一个点即可以完成转移。脏餐巾可以向m/n天后转移,干净的餐巾会在使用的这一天转移为脏餐巾。

通过上文我们可以发现,对于每一天的餐巾,我们可以把它分为干净和脏,两个状态,所以一天就被拆成了两个点,转移如下:

​ 1.一天的脏餐巾流向n天后的干净餐巾,容量inf,边权p(n + i <= N)

​ 2.一天的脏餐巾流向m天后的干净餐巾,容量inf,边权s(m + i <= N)

​ 3.一天的脏餐巾流向明天的脏餐巾,容量inf,边权0(i + 1 <= N)

那么问题来了,我们怎么体现出“使用餐巾”、“购买餐巾”的过程呢?

时刻不要忘记网络流中源点和汇点的作用

​ 4.每一天源点流向脏餐巾,容量\(r_i\),边权0,干净餐巾流向汇点,容量\(r_i\),边权为0

​ 5.每一天源点流向干净餐巾,容量inf,边权p

原理:因为所跑是最大流,所以会尽量增多餐巾;而每天向汇点的流又是受限制的,就会刚好流\(r_i\)块餐巾;每次找的又是最短增广路,所以做法正确性得以证明,由于网络流算法时间较不稳定,理论时间复杂度是O($n ^ 2 $ m)

Code

点击查看代码
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e5 + 5,inf = 0x7fffffff;
struct Edge{
int v,w,c,next;
}e[N * 2];
int n,d[N],vis[N],a[N],head[N],p,m,f,q,s,S,T,ans = 0,tot = 1;//1~n干净、n + 1~2n脏
inline void add(int x,int y,int c,int z)
{
++tot;
e[tot].v = y;
e[tot].w = z;
e[tot].c = c;
e[tot].next = head[x];
head[x] = tot;
}
inline bool spfa()
{
memset(vis,0,sizeof(vis));
for(int i=0;i<=T;i++) d[i] = inf / 2;
queue<int> q;
q.push(S);
vis[S] = 1;
d[S] = 0;
while(!q.empty())
{
int now = q.front();
q.pop();
vis[now] = 0;
for(int i = head[now];i;i = e[i].next)
{
int to = e[i].v;
if(e[i].c <= 0) continue;
if(d[to] > d[now] + e[i].w)
{
d[to] = d[now] + e[i].w;
if(!vis[to])
{
vis[to] = 1;
q.push(to);
}
}
}
}
if(d[T] < inf / 2)
return 1;
return 0;
}
inline int dinic(int x,int flow)
{
if(x == T) return flow;
int rest = flow;
vis[x] = 1;
for(int i = head[x];i && rest;i = e[i].next)
{
int to = e[i].v;
if(e[i].c <= 0 || d[to] != d[x] + e[i].w || vis[to]) continue;
int k = dinic(to,min(rest,e[i].c));
if(!k) d[to] = inf / 2;
e[i].c -= k;
rest -= k;
e[i ^ 1].c += k;
ans += k * e[i].w;
}
return flow - rest;
}
signed main()
{
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
cin>>p>>m>>f>>q>>s;
S = 0,T = 2 * n + 1;
for(int i=1;i<=n;i++)
{
add(S,i + n,a[i],0);
add(i + n,S,0,0);
add(i,T,a[i],0);
add(T,i,0,0);
add(S,i,a[i],p);
add(i,S,0,-p);
if(i + m <= n)
{
add(i + n,i + m,inf,f);
add(i + m,i + n,0,-f);
}
if(i + q <= n)
{
add(i + n,i + q,inf,s);
add(i + q,i + n,0,-s);
}
if(i + n + 1 <= n * 2)
{
add(i + n,i + n + 1,inf,0);
add(i + n + 1,i + n,0,0);
}
}
int flow = 0;
while(spfa())
{
memset(vis,0,sizeof(vis));
while(flow = dinic(S,inf / 2))
{
memset(vis,0,sizeof(vis));
flow = 0;
}
}
cout<<ans;
return 0;
}

2023.1.13 [网络流24题] 餐巾计划问题 LuoguP1251的更多相关文章

  1. 网络流24题 餐巾计划(DCOJ8008)

    题目描述 一个餐厅在相继的 n nn 天里,每天需用的餐巾数不尽相同.假设第 i ii 天需要 ri r_ir​i​​ 块餐巾.餐厅可以购买新的餐巾,每块餐巾的费用为 P PP 分:或者把旧餐巾送到快 ...

  2. 【zkw费用流】[网络流24题]餐巾计划问题

    题目描述 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,-,N).餐厅可以从三种途径获得餐巾. (1)购买新的餐巾,每块需p分: (2)把用过的餐巾送到快洗部,洗一块需m天,费用需f分(f ...

  3. 【Codevs1237&网络流24题餐巾计划】(费用流)

    题意:一个餐厅在相继的 N 天里,每天需用的餐巾数不尽相同. 假设第 i 天需要 ri块餐巾(i=1,2,…,N).餐厅可以购买新的餐巾,每块餐巾的费用为 p 分: 或者把旧餐巾送到快洗部,洗一块需 ...

  4. Cogs 461. [网络流24题] 餐巾(费用流)

    [网络流24题] 餐巾 ★★★ 输入文件:napkin.in 输出文件:napkin.out 简单对比 时间限制:5 s 内存限制:128 MB [问题描述] 一个餐厅在相继的N天里,第i天需要Ri块 ...

  5. [网络流24题]餐巾(cogs 461)

    [问题描述] 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,-,N).餐厅可以从三种途径获得餐巾. (1)购买新的餐巾,每块需p分: (2)把用过的餐巾送到快洗部,洗一块需m天,费用需f分 ...

  6. CGOS461 [网络流24题] 餐巾(最小费用最大流)

    题目这么说的: 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,…,N).餐厅可以从三种途径获得餐巾. 购买新的餐巾,每块需p分: 把用过的餐巾送到快洗部,洗一块需m天,费用需f分(f< ...

  7. COGS461. [网络流24题] 餐巾

    [问题描述] 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,…,N).餐厅可以从三种途径获得餐巾. (1)购买新的餐巾,每块需p分: (2)把用过的餐巾送到快洗部,洗一块需m天,费用需f分 ...

  8. 【COGS 461】[网络流24题] 餐巾 最小费用最大流

    既然是最小费用最大流我们就用最大流来限制其一定能把每天跑满,那么把每个表示天的点向T连流量为其所需餐巾,费用为0的边,然后又与每天的餐巾对于买是无限制的因此从S向每个表示天的点连流量为INF,费用为一 ...

  9. LibreOJ #6008. 「网络流 24 题」餐巾计划 最小费用最大流 建图

    #6008. 「网络流 24 题」餐巾计划 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  10. Libre 6008 「网络流 24 题」餐巾计划 (网络流,最小费用最大流)

    Libre 6008 「网络流 24 题」餐巾计划 (网络流,最小费用最大流) Description 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,-,N).餐厅可以从三种途径获得餐巾. ...

随机推荐

  1. 畅联云平台(www.24hlink.cn)支持的用传列表

    无锡蓝天 沈阳君丰 无锡富贝 海康威视 海湾 苏州思迪 法安通 北大青鸟 金盾 依爱 威隆 1)几乎集齐了市场上常见的用户信息传输装置的类型,如果没接入的,我们也能接入哦. 2)欢迎咨询我们关于用传的 ...

  2. 2022-11-02 Acwing每日一题

    逆序对的个数 给定一个长度为 n 的整数数列,请你计算数列中的逆序对的数量. 逆序对的定义如下:对于数列的第 i 个和第 j 个元素,如果满足 i<j 且 a[i]>a[j],则其为一个逆 ...

  3. PHP实现CURL发送请求

    public function curl($url, $params = false, $ispost = 0) { $httpInfo = array(); //初始化 $ch = curl_ini ...

  4. Go实现常用软件设计模式二:工厂模式

    目录: 举个栗子 概念介绍 使用场景 1.举个栗子 类图 ``` @startuml'https://plantuml.com/class-diagramclass Elephant { String ...

  5. 28分钟学会Linux三剑客

    把简单的技术学到极致就是高手. 前言 Linux三剑客指的是grep.sed以及awk命令的使用,这三个命令功能异常强大,大到没朋友.grep命令主打"查找",sed命令主打&qu ...

  6. React综合使用联系

    index.js import React from 'react' import ReactDOM from 'react-dom' import CartSimple from './CartSi ...

  7. Referenced file contains errors (http://mybatis.org/dtd/mybatis-3-config.dtd). For more information, right click on the message in the Problems View and select "Show Details..."

    mybatis配置文件报错Referenced file contains errors mybatis的配置文件报错 The errors below were detected when vali ...

  8. vulnhub靶场之Chronos:1

    准备: 攻击机:虚拟机kali.本机win10. 靶机:Chronos,下载地址:https://download.vulnhub.com/chronos/Chronos.ova,下载后直接vbox打 ...

  9. GeoServer 2.15.0 开启跨域设置

    GeoServe老版本可能开启跨域设置比较麻烦,但2.15.0版本还是比较简单的. 首先找到安装目录下的 webapps\geoserver\WEB-INF\web.xml 文件,打开进行编辑,建议编 ...

  10. Kubernetes(K8S) 配置管理-ConfigMap 介绍

    作用:存储不加密数据到 etcd,让 Pod 以变量或者 Volume 挂载到容器中 场景:配置文件 创建配置文件 redis.properties redis.host=127.0.0.1 redi ...