Bootcamp

Topics related to measure theory.

略去,详见测度论专栏中的文章


Expectations

令 \(X\) 为 \((\Omega, \mathcal{F}, P)\) 上的随机变量,\(\mathbb{E}[X]\) 为其期望。一些期望的特殊表示如下:

  • \(X: \Omega \rightarrow \mathbb{R}\) 为简单函数,即,\(X\) 在有限集 \(\left\{x_{1},\ldots, x_{n} \right\}\) 中取值,则:

    \[\mathbb{E}[X] := \sum\limits^{n}_{i=1} x_{i} P(X = x_{i})
    \]
  • \(X \geq 0\) almost surely,则:

    \[\mathbb{E}[X] := \sup \left\{ \mathbb{E}[Y]: ~ Y \mbox{ is simple, } ~ 0 \leq Y \leq X \mbox{ almost surely. } \right\}
    \]

    注意,非负随机变量的期望可能为 \(\infty\)。

  • \(\mathbb{E}[X^{+}]\) 或 \(\mathbb{E}[X^{-}]\) 其中之一是有限的,则:

    \[\mathbb{E}[X] := \mathbb{E}[X^{+}] - \mathbb{E}[X^{-}]
    \]
  • \(X\) 为一个向量,且 \(\mathbb{E}[|X|] < \infty\),则:

    \[\mathbb{E}\Big[\left(X_{1}, \ldots, X_{d}\right)\Big] := \Big( \mathbb{E}[X_{1}], \ldots, \mathbb{E}[X_{d}] \Big)
    \]

Jensen's Inequality (琴生不等式)

令 \(X\) 为一个随机变量,\(g: \mathbb{R} \rightarrow \mathbb{R}\) 为一个凸函数。那么当 \(X\) 的期望存在时:

\[\mathbb{E}[g(X)] \geq g\left(\mathbb{E}[X] \right)
\]

若 \(g\) 为严格凸函数,则以上不等式可随之写为严格大于的形式(除非 \(X\) 取常数值)。


  • 注(Convex function):

    函数 \(f: X \rightarrow \mathbb{R}\) 称作一个凸函数,如果:

    \[\forall ~ t \in [0, ~ 1]: ~ \forall ~ x_{1}, x_{2} \in X: ~ f\Big( tx_{1} + (1-t) x_{2} \Big) \leq t\cdot f(t x_{1}) + (1-t) \cdot f(x_{2})
    \]

Self-Financing Condition

A self-financing strategy is defined as a consumption stream \((c_{t})_{t\geq 0}\) which follows:

\[(c_{t} - c_{t+1})\cdot P_{t} = 0 \qquad \quad \mbox{for } \forall t \geq 0
\]

Numeraire (计价单位)

  • \((\eta_t)_{t\geq 0}\) 为 previsible process.

  • \(\eta_{t} \cdot P_{t} > 0\) almost surely, i.e., \(P(\eta_t \cdot P_{t} > 0) = 1\).

  • \((\eta_{t})_{t\geq 0}\) 满足 self-financing condition, i.e.,

    \[(\eta_{t} - \eta_{t+1}) \cdot P_{t} = 0 \qquad \quad \mbox{for } \forall t\geq 0
    \]

    这实际上意味着:

    \[\eta_{t} \cdot P_{t} = \eta_{t+1} \cdot P_{t} \qquad \qquad \text{for } ~ \forall t \geq 0
    \]

    注意,以上式子中两侧的 \(P_{t}\) 不能随手约去,因为等式两边是两个向量的内积运算。


Numeraire Asset

  • A numeraire asset is an asset with strictly positive price.

  • 若 asset \(i\) 为一个 numeraire asset,那么对于 \(\forall t \geq 0\),定义 constant portfolio \(\eta\):

    \[\eta_{t}^{j} = \begin{cases}
    1 \qquad \text{if } j = i\\
    0 \qquad \text{otherwise}
    \end{cases}
    \]

    为一个 numeraire portfolio。


Investment-Consumption Strategy

\[\begin{align*}
c_{0} & = x - H_{1} \cdot P_{0}\\
c_{t} & = (H_{t} - H_{t+1}) \cdot P_{t} \qquad \qquad \mbox{for } t \geq 1
\end{align*}
\]

其中 \(x\) 为初始财富。


Terminal Consumption Strategy

\[\begin{align*}
c_{0} & = -H_{1} \cdot P_{0} = 0\\
c_{t} & = (H_{t} - H_{t+1}) \cdot P_{t} = 0 \qquad \qquad \mbox{for } 1 \leq t \leq T-1\\
c_{T} & = H_{T} \cdot P_{T} \geq 0 \\
\mbox{and} \qquad \qquad \\
P( &c_{T} > 0) > 0
\end{align*}
\]

其中 \(H\) 为 previsible process,non-random \(T > 0\) 使得以上 holds almost surely。


Pure Investment Strategy

对于 \(\forall t \geq 0\),每一期持仓 \(H_{t}\),但将每一期的 consumption \(c_{t}\) 不用于消费,而是用于投资 numeraire portfolio \(\eta_{t}\)。


Theorem. 局部鞅 \(\rightarrow\) 鞅的充分条件 (local martingales to true martingales: sufficient condition)

令 \(X\) 为一个离散或连续的 local martingale,令过程 \((Y_{t})_{t\geq 0}\) 满足:

\[\mbox{for } ~ \forall ~ s,t, ~ 0 \leq s \leq t: ~ |X_{s}| \leq Y_{t} \mbox{ almost surely}
\]

若 \(\mathbb{E}[Y_{t}] \leq \infty, ~ \mbox{ for } ~ \forall ~ t \geq 0\),那么 \(X\) 为一个 true martingale。


证明:

由于 \((X_{t})_{t\leq 0}\) 为一个 local martingale,根据定义存在一个 stopping time series (localizing sequence):\((\tau_{N})_{N\geq0}\),满足 \(\lim \limits_{N \rightarrow \infty} \tau_{N} = \infty\),使得对于 \(\forall ~ N \geq 0\),\(\Big(X^{\tau_{N}}_{t}\Big)_{t \geq 0} = \Big(X_{t \land \tau_{N}}\Big)_{t\geq 0}\) 为 true martingale。

首先证明 \((X_{t})_{t\geq 0}\) 可积。对于任意 \(t \geq 0\),取任意 \(T \geq t\),根据条件:\(|X_{t}| \leq Y_{T}\) almost surely。又因为:\(\forall ~ T \geq 0: ~ \mathbb{E}[Y_{T}] < \infty\),那么:

\[\mbox{for } ~ \forall ~ t \geq 0: ~ |X_{t}| \leq Y_{T} \quad \implies \quad \mathbb{E}[X_{t}] \leq \mathbb{E}[Y_{T}] < \infty
\]

因此 \((X_{t})_{t\geq 0}\) integrable。

将 \(X_{t\land\tau_{N}}\) 视作一个下标为 \(N\) 的序列,即:

\[\Big\{ X_{t\land \tau_{N}} \Big\}_{N\geq 0} = X_{t\land \tau_{1}}, ~ X_{t\land \tau_{2}}, ~ X_{t\land \tau_{3}}, ~ \ldots
\]

注意到 \(X_{t\land \tau_{N}} = X_{\min(t, \tau_{N})} \longrightarrow X_{t}\) almost surely with \(N \longrightarrow \infty\),即:

\[\mbox{for } ~ \forall ~ t \geq 0: ~ \forall ~ \varepsilon > 0: ~ P\left( \lim\limits_{N \rightarrow \infty} \left| X_{t\land \tau_{N}} - X_{t} \right| > \varepsilon \right) = 0
\]

这是因为 \(\lim \limits_{N \rightarrow \infty} \tau_{N} = \infty\),\(t \land \tau_{N} = \min(t, \tau_{N})\) 自然随 \(N\) 增大而收敛于 \(t\)。

所以对于 \(\forall ~ 0 \leq s \leq t\):

\[\begin{align*}
\mathbb{E}[X_{t} ~ | ~ \mathcal{F}_{s}] & = \mathbb{E}\Big[\lim\limits_{N\rightarrow \infty}X_{t\land \tau_{N}} ~ | ~ \mathcal{F}_{s}\Big]\\
& = \lim\limits_{N \rightarrow \infty} \mathbb{E}\Big[ X_{t\land\tau_{N}} ~ | ~ \mathcal{F}_{s}\Big] \quad (\mbox{Dominated Convergence Theorem})\\
& = \lim\limits_{N \rightarrow \infty} X_{s \land \tau_{N}} \quad (\mathbf{*})\\
& = X_{s}
\end{align*}
\]

因此:local martingale \((X_{t})_{t\geq 0}\) 在给定的条件下也为一个 true martingale。


  • 注意:

    以上带星号的那一步推导中,鞅 \(\Big(X_{t\land\tau_{N}}\Big)_{t\geq 0}\) 的下标依然是 \(t\),尽管现在复合为 \(t\land \tau_{N}\)。因此在这一步中我们只需将 \(t\) 替换为 \(s\) 即可。


Corollary.

假设 \(X\) 一个 离散 时间 local martingale,使对于 \(\forall ~ t \geq 0: ~ \mathbb{E}[|X_{t}|] < \infty\),那么 \(X\) 是一个 true martingale。


证明:

令 \(Y_{t} = |X_{0}| + |X_{1}| + \cdots + |X_{t}|\)。Trivially:

\[Y_{t} = |X_{0}| + |X_{1}| + \cdots + |X_{t}| \geq |X_{s}| ~ \mbox{ for } ~ \forall s \in \left\{0, 1, \ldots, t \right\}
\]

并且由于:\(\forall ~ t \geq 0: ~ \mathbb{E}[|X_{t}|] < \infty\),那么:

\[\begin{align*}
\mathbb{E}[Y_{t}] & = \mathbb{E}\Big[ \left|X_{0}\right| + \left|X_{1}\right| + \cdots + \left|X_{t}\right| \Big]\\
& = \sum\limits^{t}_{s=0}\mathbb{E}\big[ \left| X_{s} \right| \big] < \infty
\end{align*}
\]

所以 \((Y_{t})_{t\geq 0}\) 可积,并且此时 \((X_{t})_{t \leq 0}\) 和 \((Y_{t})_{t\geq 0}\) 恰满足上述 Sufficient Condition,因此 \((X_{t})_{t\geq 0}\) 为一个 true martingale。


Supermartingale and Submartingale (上鞅与下鞅)

上鞅(Supermartingale)

相关于 filtration \(\mathcal{\left\{ F_{t} \right\}}_{t\geq 0}\) 的一个 supermartingale(上鞅)是一个 adapted stochastic process \((U_{t})_{t\geq 0}\),满足以下性质:

  • (Integrability)

    \[\forall ~ t \geq 0: ~ \mathbb{E}\big[\left| U_{t} \right|\big] < \infty
    \]
  • (Decrease in average)

    \[\forall ~ 0 \leq s \leq t: ~ \mathbb{E}\big[U_{t} ~ | ~ \mathcal{F}_{s}\big] \leq U_{s}
    \]

下鞅(Submartingale)

相关于 filtration \(\mathcal{\left\{ F_{t} \right\}}_{t\geq 0}\) 的一个 submartingale(下鞅)是一个 adapted stochastic process \((V_{t})_{t\geq 0}\),满足以下性质:

  • (Integrability)

    \[\forall ~ t \geq 0: ~ \mathbb{E}\big[ | V_{t} | \big] < \infty
    \]
  • (Increase in average)

    \[\forall ~ 0 \leq s \leq t: ~ \mathbb{E}\big[V_{t} ~ | ~ \mathcal{F}_{s}\big] \geq V_{s}
    \]

鞅、上鞅、下鞅

A martingale is a stochastic process that is both a supermartingale and a submartingale.


Theorem.

假设 \(X\) 是一个连续或离散时间上的 local martingale。如果 \(X_{t} \geq 0\) 对于 \(\forall ~ t \geq 0\) 都成立,那么 \(X\) 是一个 supermartingale(上鞅)。


证明:

令 \((\tau_{N})_{N\geq 0}\) 为相关于 local martingale \((X_{t})_{t\geq 0}\) 的 localizing sequence,即:

\[\forall ~ N \geq 0: ~ \Big(X^{\tau_{N}}_{t} \Big)_{t\geq 0} ~ \mbox{ is a true martingale.}
\]

首先证明 \((X_{t})_{t \geq 0 }\) 可积。由 Fatou's Lemma

\[\begin{align*}
\mathbb{E}\big[|X_{t}|\big] & = \mathbb{E}[X_{t}] \\
& = \mathbb{E}\Big[\lim\limits_{N \rightarrow \infty} X_{t \land \tau_{N}}\Big] \\
& = \mathbb{E}\Big[\liminf\limits_{N \rightarrow \infty} X_{t \land \tau_{N}}\Big] \\
& \leq \liminf\limits_{N \rightarrow \infty} \mathbb{E}\Big[X_{t\land \tau_{N}}\Big] \\
& = \liminf\limits_{N \rightarrow \infty} \mathbb{E}\Big[X_{t\land \tau_{N}} ~ \Big| ~ \mathcal{F}_{0} \Big] \\
& = X_{0} < \infty
\end{align*}
\]

在条件期望上运用 Fatou's Lemma,对于 \(\forall ~ 0 \leq s \leq t:\)

\[\begin{align*}
\mathbb{E}\big[X_{t} ~ | ~ \mathcal{F}_{s}\big] & = \mathbb{E}\Big[ \lim\limits_{N \rightarrow \infty} X_{t\land \tau_{N}} ~ \Big| ~ \mathcal{F}_{s} \Big] \\
& = \mathbb{E}\Big[ \liminf\limits_{N \rightarrow \infty} X_{t\land \tau_{N}} ~ \Big| ~ \mathcal{F}_{s} \Big] \\
& \leq \liminf_{N \rightarrow \infty} \mathbb{E}\Big[ X_{t\land \tau_{N}} ~ \Big| ~ \mathcal{F}_{s} \Big] \\
& = \liminf_{N \rightarrow \infty} X_{s \land \tau_{N}} \\
& = X_{s}
\end{align*}
\]

因此 \((X_{t})_{t\geq 0}\) 为一个 supermartingale(上鞅)。


Corollary.

如果 \((X_{t})_{t\geq 0}\) 是一个离散时间 local martingale,且对于任意 $ t \geq 0$,有 \(X_{t} \geq 0\) almost surely,那么 \((X_{t})_{t\geq 0}\) 是一个 true martingale。


证明:

通过上述 Theorem,我们有:

\[\mathbb{E}\big[|X_{t}|\big] = \mathbb{E}[X_{t}] \leq X_{0} < \infty
\]

由于 \(X\) 是可积的,通过上一条 Corollary 可以得出 \((X_{t})_{t\geq 0}\) 是一个 martingale 的结论。


Theorem.

假设:

\[X_{t} = X_{0} + \sum\limits^{t}_{s=1} K_{s} (M_{s} - M_{s-1})
\]

其中,\(K\) 是一个 previsible process,\(M\) 是一个 local martingale,\(X_{0}\) 是一个常数。

如果对于某些非随机的 \(T > 0\),有:\(X_{T} \geq 0\) almost surely,那么 \((X_{t})_{0\leq t \leq T}\) 是一个 true martingale。


证明:

略。(太长了,以后有机会补上。)


随机贴现因子(Stochastic Discount Factor / Pricing Kernel / State Price Density)

在一个没有股息的市场中,在时刻 \(s\) 和 \(t\) 间(\(0 \leq s < t\))的随机贴现因子是一个 adapted positive \(\mathcal{F}_{t}-\) measurable random variable \(\rho_{s,t}\), 使得:

\[P_{s} = \mathbb{E}\big[\rho_{s,t}P_{t} ~ | ~ \mathcal{F}_{s}\big]
\]

  • 令 \(Y\) 为一个 martingale deflator(i.e. \(\forall 0 \leq s < t: ~ \mathbb{E}[Y_{t}P_{t} ~ | ~ \mathcal{F}_{s}] = Y_{s}P_{s}\)),令 \(\rho_{s,t} = \frac{Y_{t}}{Y_{s}}\),若 \(\rho_{s,t}P_{t}\) 可积,那么 \(\rho_{s,t}\) 为时间 \(s\) 与 \(t\) 间的 pricing kernel。

    • 证明:

      对于 positivity,由于 \(Y\) 为 martingale deflator,则 \(\forall t \geq 0: ~ Y_{t} > 0\),所以 \(\rho_{s,t} = \frac{Y_{t}}{Y_{s}} > 0\),并且:

      \[\begin{align*}
      \mathbb{E} \big[ \rho_{s,t} P_{t} ~ | ~ \mathcal{F}_{s} \big] & = \mathbb{E} \Big[ \frac{Y_{t}}{Y_{s}} P_{t} ~ | ~ \mathcal{F}_{s} \Big] \\
      & = \frac{1}{Y_{s}} \mathbb{E} \big[ Y_{t}P_{t} ~ | ~ \mathcal{F}_{s} \big] \\
      & = \frac{1}{Y_{s}} \cdot Y_{s} P_{s} \\
      & = P_{s}
      \end{align*}
      \]

      因此 \(\rho_{s,t}\) 为一个 pricing kernel。

  • 相反地,对于 \(s\geq 0\),假设 \(\rho_{s, s+1}\) 为 时间 \(s\) 与 \(s+1\) 间的 pricing kernel,令 \(Y_{t} = \rho_{0,1} \rho_{1,2} \ldots \rho_{t-1, t}\),且 \(YP\) 可积,那么 \(Y\) 为一个 martingale deflator。

    • 证明:

      对于 \(\forall t \geq 0\),由于 pricing kernel 为正随机变量,则 \(Y_{t} = \rho_{0,1} \rho_{1,2} \ldots \rho_{t-1, t} > 0\),并且:

      \[\begin{align*}
      \mathbb{E} \big[Y_{t+1}P_{t+1} ~ \big| ~ \mathcal{F}_{t} \big] & = \mathbb{E} \big[\rho_{0,1} \rho_{1,2} \ldots \rho_{t-1, t} \rho_{t, t+1} \cdot P_{t+1} ~ \big| ~ \mathcal{F}_{t} \big] \\
      & = \rho_{0,1} \rho_{1,2} \ldots \rho_{t-1, t} \cdot \mathbb{E} \big[\rho_{t, t+1} \cdot P_{t+1} ~ \big| ~ \mathcal{F}_{t} \big] \qquad \text{(adaptness)}\\
      & = Y_{t} \cdot P_{t} \qquad \text{(by definition)}
      \end{align*}
      \]

      因此,\((Y_{t})_{t\geq 0}\) 为一个 martingale deflator。


Proposition.

考虑存在一个 numeraire \(\eta\) 的市场,且令:\(N_{t} = \eta_{t} \cdot P_{t} \quad \forall t \geq 0\)。令 \(H\) 为一个 investment-consumption strategy,即,\(H\) 的 consumption stream 定义为:

\[\begin{align*}
c_{0} & = x - H_{1} \cdot P_{0}\\
c_{t} & = (H_{t} - H_{t+1}) \cdot P_{t}
\end{align*}
\]

其中 \(x\) 为初始财富。令:

\[K_{t} = H_{t} + \eta_{t} \sum\limits_{s=0}^{t-1} \frac{c_{s}}{N_{s}}
\]

那么,\(K\) 为一个 pure-investment strategy from the same initial wealth \(x\)。

特殊地,当且仅当 \(K\) 为一个 terminal-consumption arbitrage 时,\(H\) 为一个 arbitrage。


证明:

\[\begin{align*}
(K_{t} - K_{t+1}) \cdot P_{t} & = \Big( H_{t} + \eta_{t}\sum\limits_{s=0}^{t-1}\frac{c_{s}}{N_{s}} - H_{t+1} - \eta_{t+1}\sum\limits_{s=0}^{t}\frac{c_{s}}{N_{s}} \Big) \cdot P_{t} \\
& = (H_{t} - H_{t+1}) \cdot P_{t} + \Big( \eta_{t}\sum\limits_{s=0}^{t-1}\frac{c_{s}}{N_{s}} - \eta_{t+1}\sum\limits_{s=0}^{t}\frac{c_{s}}{N_{s}} \Big) \cdot P_{t} \\
& = (H_{t} - H_{t+1}) \cdot P_{t} + \Big( \eta_{t}\sum\limits_{s=0}^{t}\frac{c_{s}}{N_{s}} - \eta_{t+1}\sum\limits_{s=0}^{t}\frac{c_{s}}{N_{s}} - \eta_{t} \frac{c_{t}}{N_{t}} \Big) \cdot P_{t} \\
& = (H_{t} - H_{t+1}) \cdot P_{t} + \Big( \big( \eta_{t} - \eta_{t+1} \big) \sum\limits_{s=0}^{t} \frac{c_{s}}{N_{s}} - \eta_{t} \frac{c_{t}}{N_{t}} \Big) \cdot P_{t} \\
& = (H_{t} - H_{t+1}) \cdot P_{t} - \eta_{t} \cdot P_{t} \frac{c_{t}}{N_{t}} + \big( \eta_{t} - \eta_{t+1} \big) \cdot P_{t} \sum\limits_{s=0}^{t}\frac{c_{s}}{N_{s}} \\
& = (H_{t} - H_{t+1}) \cdot P_{t} - \eta_{t} \cdot P_{t}\frac{c_{t}}{N_{t}} \qquad \text{(Investment-consumption strategy)} \\
& = c_{t} \cdot P_{t} - N_{t} \cdot \frac{c_{t}}{N_{t}} \qquad \text{(By definition)} \\
& = 0
\end{align*}
\]

因此,对于 \(\forall t \geq 0\),有:

\[(K_{t} - K_{t+1}) \cdot P_{t} = 0
\]

由假设:\((\eta_{t})_{t\geq 0}\) 为 pure-investment strategy,则 \((K_{t})_{t\geq 0}\) 亦为 pure-investment strategy。

假设对于 non-random \(T\),有:\(c_{T} = H_{T}\cdot P_{T}\),那么:

\[\begin{align*}
K_{T} \cdot P_{T} & = \Big( H_{T} + \eta_{T}\sum\limits_{s=0}^{T-1}\frac{c_{s}}{N_{s}} \Big) \cdot P_{T} \\
& = H_{T} \cdot P_{T} + \eta_{T} \cdot P_{T} \sum\limits_{s=0}^{T-1}\frac{c_{s}}{N_{s}} \\
& = c_{T} + N_{T} \sum\limits_{s=0}^{T-1}\frac{c_{s}}{N_{s}} \\
& = N_{T} \frac{c_{T}}{N_{T}} + N_{T} \sum\limits_{s=0}^{T-1}\frac{c_{s}}{N_{s}} \\
& = N_{T} \sum\limits_{s=0}^{T}\frac{c_{s}}{N_{s}} \\
\end{align*}
\]
\[\implies K_{T} \cdot P_{T} = N_{T} \sum\limits_{s=0}^{T}\frac{c_{s}}{N_{s}}
\]

则:当且仅当 某些 \(c_{t} ~ (0 \leq t \leq T)\) 取值为 strictly positive 时, 等式左侧 \(K_{T} \cdot P_{T}\) 为 strictly positive。


Lemma. (Bayes formula; from homework 5.)

令 \(\mathbb{P}\) 和 \(\mathbb{Q}\) 为定义在 \((\Omega, ~ \mathcal{F})\) 上的 equivalent probability measures,令 Radon - Nikodym derivative: \(Z = \frac{d\mathbb{Q}}{d\mathbb{P}}\),令 \(\mathcal{G} \subset \mathcal{F}\) 为一个 \(\sigma-\)field。那么:

\[\mathbb{E}^{\mathbb{Q}}\big[ X ~ \big| ~ \mathcal{G} \big] = \frac{\mathbb{E}^{\mathbb{P}}[ZX ~ | ~ \mathcal{G}]}{\mathbb{E}^{\mathbb{P}}[Z ~ | ~ \mathcal{G}]}
\]

证明:

令 \(Y = \frac{\mathbb{E}^{\mathbb{P}}[ZX ~ | ~ \mathcal{G}]}{\mathbb{E}^{\mathbb{P}}[Z ~ | ~ \mathcal{G}]}\),欲证:\(\mathbb{E}^{\mathbb{Q}}\big[ X ~ \big| ~ \mathcal{G} \big] = Y\),这等价于:

对于 \(\forall G \in \mathcal{G}\):

\[\begin{align*}
& \mathbb{E}^{\mathbb{Q}}\big[ X ~ \big| ~ \mathcal{G} \big] \cdot \mathbb{I}_{G} = Y \cdot \mathbb{I}_{G} \\
\iff \quad & \mathbb{E}^{\mathbb{Q}}\Big[ \mathbb{E}^{\mathbb{Q}}\big[ X ~ \big| ~ \mathcal{G} \big] \cdot \mathbb{I}_{G} \Big] = \mathbb{E}^{\mathbb{Q}} \Big[ Y \cdot \mathbb{I}_{G} \Big] \\
\iff \quad & \mathbb{E}^{\mathbb{Q}}\Big[ \mathbb{E}^{\mathbb{Q}}\big[ X \cdot \mathbb{I}_{G} ~ \big| ~ \mathcal{G} \big] \Big] = \mathbb{E}^{\mathbb{Q}} \Big[ Y \cdot \mathbb{I}_{G} \Big] \\
\iff \quad & \mathbb{E}^{\mathbb{Q}} \big[ X \cdot \mathbb{I}_{G} \big] = \mathbb{E}^{\mathbb{Q}} \Big[ Y \cdot \mathbb{I}_{G} \Big] \\
\iff \quad & \int_{G} ~ X ~ d\mathbb{Q} = \int_{G} ~ Y ~ d\mathbb{Q}
\end{align*}
\]

由 Radon-Nikodym derivative \(Z = \frac{d\mathbb{Q}}{d\mathbb{P}} \implies d\mathbb{Q} = Z \cdot d\mathbb{P}\):

\[\begin{align*}
& \int_{G} ~ X ~ d\mathbb{Q} = \int_{G} ~ Y ~ d\mathbb{Q} \\
\iff \quad & \int_{G} ~ X Z ~ d\mathbb{P} = \int_{G} ~ YZ ~ d\mathbb{P} \\
\iff \quad & \mathbb{E}^{\mathbb{P}}\big[ XZ \cdot \mathbb{I}_{G} \big] = \mathbb{E}^{\mathbb{P}}\big[ YZ \cdot \mathbb{I}_{G} \big]
\end{align*}
\]

因此,目标等价于证明:对于 \(\forall G \in \mathcal{G}\),有:

\[\mathbb{E}^{\mathbb{P}}\big[ XZ \cdot \mathbb{I}_{G} \big] = \mathbb{E}^{\mathbb{P}}\big[ YZ \cdot \mathbb{I}_{G} \big]
\]

注意到 \(Y = \mathbb{E}^{\mathbb{Q}}\big[ X ~ \big| ~ \mathcal{G} \big]\) 为 \(\mathcal{G}-\)measurable,那么RHS:

\[\begin{align*}
\mathbb{E}^{\mathbb{P}}\big[ YZ \cdot \mathbb{I}_{G} \big] & = \mathbb{E}^{\mathbb{P}} \Big[ \mathbb{E}^{\mathbb{P}}\big[ YZ \cdot \mathbb{I}_{G} ~ \big| ~ \mathcal{G} \big] \Big] \qquad \text{(Tower property)} \\
& = \mathbb{E}^{\mathbb{P}} \Big[ \mathbb{I}_{G}Y \cdot \mathbb{E}^{\mathbb{P}}\big[ Z ~ \big| ~ \mathcal{G} \big] \Big] \qquad \text{($\mathbb{I}_{G}Y$ is $\mathcal{G}-$measurable)} \\
& = \mathbb{E}^{\mathbb{P}} \Big[ \mathbb{I}_{G} \cdot \frac{\mathbb{E}^{\mathbb{P}}[ZX ~ | ~ \mathcal{G}]}{\mathbb{E}^{\mathbb{P}}[Z ~ | ~ \mathcal{G}]} \cdot \mathbb{E}^{\mathbb{P}}\big[ Z ~ \big| ~ \mathcal{G} \big] \Big] \\
& = \mathbb{E}^{\mathbb{P}} \Big[ \mathbb{I}_{G} \cdot \mathbb{E}^{\mathbb{P}} \big[ZX ~ \big| ~ \mathcal{G} \big] \Big] \\
& = \mathbb{E}^{\mathbb{P}} \Big[ \mathbb{E}^{\mathbb{P}} \big[ZX \cdot \mathbb{I}_{G} ~ \big| ~ \mathcal{G} \big] \Big] \qquad \text{($\mathbb{I}_{G}$ is $\mathcal{G}-$measurable)} \\
& = \mathbb{E}^{\mathbb{P}} \big[ ZX \cdot \mathbb{I}_{G} \big] \qquad \text{(Tower property)}
\end{align*}
\]

证毕。

Stochastic Methods in Finance (1)的更多相关文章

  1. 自然语言15.1_Part of Speech Tagging 词性标注

    QQ:231469242 欢迎喜欢nltk朋友交流 https://en.wikipedia.org/wiki/Part-of-speech_tagging In corpus linguistics ...

  2. 词性标注 parts of speech tagging

    In corpus linguistics, part-of-speech tagging (POS tagging or POST), also called grammatical tagging ...

  3. Deep Learning中的Large Batch Training相关理论与实践

    背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 在分布式训练时,提高计算通信占比是提高计算加速比的有效手段,当网络通信优化到一 ...

  4. Introduction To Monte Carlo Methods

    Introduction To Monte Carlo Methods I’m going to keep this tutorial light on math, because the goal ...

  5. Computational Methods in Bayesian Analysis

    Computational Methods in Bayesian Analysis Computational Methods in Bayesian Analysis  [Markov chain ...

  6. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week2, Assignment(Optimization Methods)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. 请不要ctrl+c/ctrl+v作业. Optimization Methods Until now, you've always u ...

  7. (转) Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance

    Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance 2018-1 ...

  8. History of Monte Carlo Methods - Part 1

    History of Monte Carlo Methods - Part 1 Some time ago in June 2013 I gave a lab tutorial on Monte Ca ...

  9. Stochastic Optimization Techniques

    Stochastic Optimization Techniques Neural networks are often trained stochastically, i.e. using a me ...

  10. 《Graph Neural Networks: A Review of Methods and Applications》阅读笔记

    本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习 ...

随机推荐

  1. ubuntu基本

    ubuntu使用过程中遇到的指令 apt-get更新 当现出net-tools没有可安装候选 的提示时,可能是apt-get需要更新了.通过指令sudo apt install net-tools p ...

  2. JavaWeb4

    1. Filter 1.1 概述 Filter:过滤器 Servlet.Filter和Listener称为Web的三大组件 生活中的过滤器:净水器.空气净化器.土匪 web中的过滤器:当访问服务器的资 ...

  3. IIS 配置集中式证书模块实现网站自动绑定证书文件

    在 Windows 环境下如果采用 IIS 作为 网站服务器时,常规的网站绑定 HTTPS 需要一个一个站点手动选择对应的证书绑定,而且证书过期之后更换证书时也是需要一个个重新绑定操作,无法便捷的做到 ...

  4. 更换K8S证书可用期

    帮助文档:https://zealous-cricket-cfa.notion.site/kubeadm-k8s-24611be9607c4b3193012de58860535e 解决: 1.安装GO ...

  5. php 导出图片为pdf

    require_once ROOTPATH . 'tcpdf/vendor/autoload.php';$html='';if($html){ mpdf($html); }else{ echo &qu ...

  6. 关于linux建立u盘legacy启动方式引导

    前言 我一直在用linux,但是我在linux制作pe启动盘无法实现,windows有很多制作pe启动盘的软件,如大白菜,u深度什么的,但是linux没有对应的软件,所以我想写一个类似的工具,那么就有 ...

  7. 0停机迁移Nacos?Java字节码技术来帮忙

    摘要:本文介绍如何将Spring Cloud应用从开源Consul无缝迁移至华为云Nacos. 本文分享自华为云社区<0停机迁移Nacos?Java字节码技术来帮忙>,作者:华为云PaaS ...

  8. TCP\UDP协议 socket模块

    目录 传输层主要协议 TCP协议 三次握手 TCP协议反馈机制 四次挥手 洪水攻击 UDP协议 socket模块 socket代码简介 socket.socket() server.bind() se ...

  9. c++中编码protobuf repeated string

    参考:http://www.cppblog.com/API/archive/2014/12/09/209070.aspx proto文件 addressbook.proto syntax = &quo ...

  10. 数据库服务器CPU不能全部利用原因分析

    背景 客户凌晨把HIS数据库迁移到配置更高的新服务器,上午业务高峰时应用非常缓慢. 现象 通过SQL专家云实时可视化界面看到大量的绿点,绿点表示会话在等待某项资源,绿点越大说明等待的会话数越多. 进入 ...